

Bright Red MSQC6110W, MSQC6140W High Efficiency Red MSQC6910W, MSQC6940W Green MSQC6410W, MSQC6440W

Features

- · Bright Bold Segments
- Common Anode/Cathode
- · Low Power Consumption
- Low Current Capability
- Epoxy Encapsulated PCB
- · High Performance
- · High Reliability

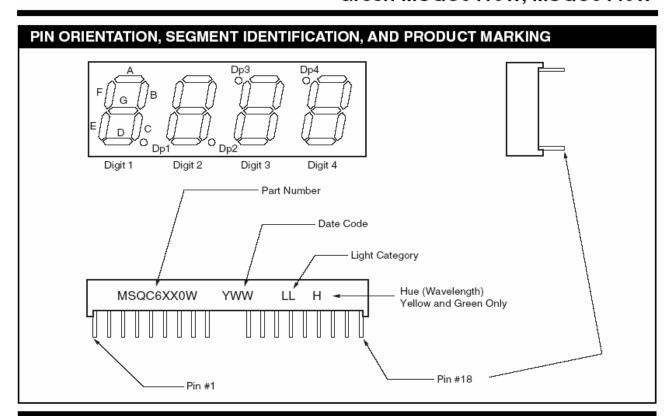
Applications

- Appliances
- Automotive
- Instrumentation
- Process Control

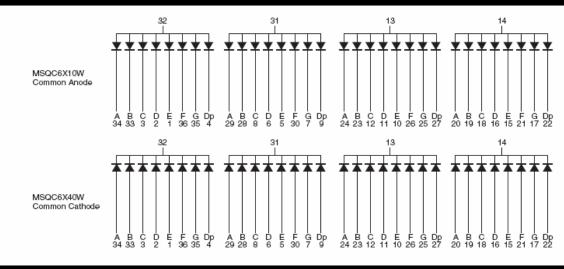
MODELS AVAILABLE						
Part Number	Color	Description				
MSQC6110W	Bright Red	Clock Display, Common Anode – gray face, neutral segments				
MSQC6140W	Bright Red	Clock Display, Common Cathode – gray face, neutral segments				
MSQC6410W	Green	Clock Display, Common Anode – gray face, green segments				
MSQC6440W	Green	Clock Display, Common Cathode – gray face, green segments				
MSQC6910W	High Efficiency Red	Clock Display, Common Anode – gray face, neutral segments				
MSQC6940W	High Efficiency Red	Clock Display, Common Cathode – gray face, neutral segments				

Bright Red MSQC6110W, MSQC6140W High Efficiency Red MSQC6910W, MSQC6940W Green MSQC6410W, MSQC6440W

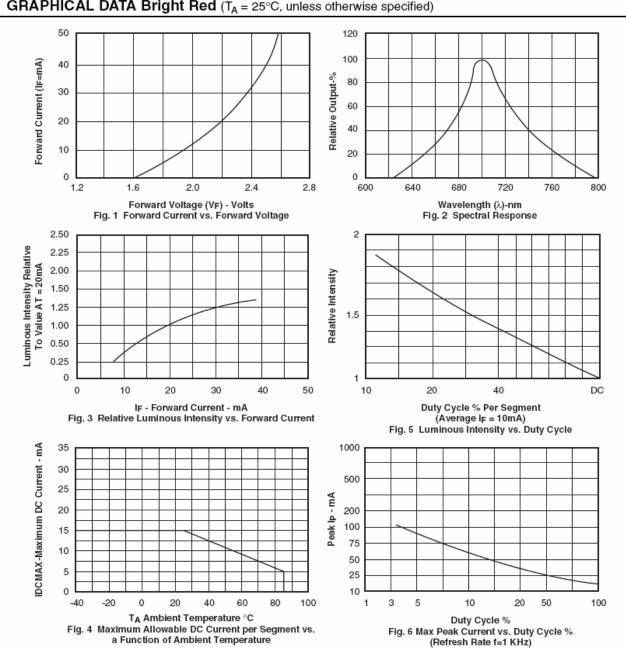
ABSOLUTE MAXIMUM RATINGS ⁽¹⁾ (T _A = 25°C, unless otherwise specified)									
Part Number Parameter	MSQC6110W MSQC6140W	MSQC6410W MSQC6440W	MSQC6910W MSQC6940W	Units					
Continuous Forward Current (each segment)	15	25	25	mA					
Peak Forward Current (F = 10KHz, D/F = 1/10)	60	90	90	mA					
Power Dissipation (P _D)	40	70	70	mW					
*Derate Linearly from 25°C	0.17	0.33	0.33	mW					
Reverse Voltage per Die		5 Volts							
Operating and Storage Temperature Range		-40°C to +85°C							
Lead soldering time (1/16 inch from standoffs)		5 seconds @ 230°C							


ELECTRO-OPTICAL CHARACTERISTICS ⁽¹⁾ (T _A = 25°C, unless otherwise specified)								
Part Number Parameter	MSQC6110W MSQC6140W	MSQC6410W MSQC6440W	MSQC6910W MSQC6910W	Units	Test Condition			
Luminous intensity ⁽²⁾ (I _V)								
Minimum (Standard Current)	300	800	800	μcd	I _F = 10mA			
Typical (Standard Current)	700	2400	2000	μcd	$I_F = 10mA$			
Minimum (Low Current)	Not Available							
Typical (Low Current)	Not Available							
Forward Voltage (V _F)								
Typical (Standard Current)	2.10	2.10	2.00	٧	I _F = 20mA			
Maximum (Standard Current)	2.80	2.80	2.80	V	$I_F = 20 \text{mA}$			
Typical (Low Current)	Not Available							
Maximum (Low Current)	Not Available							
Peak Wavelength	695	570	635	nm	I _F = 20mA			
Dominant Wavelength	Not Available							
Spectral Line 1/2 Width	90	30	45	nm	I _F = 10mA			
Reverse B ⁽³⁾ . Voltage (V _R)	5	5	5	٧	I _R = 100μA			

NOTES:

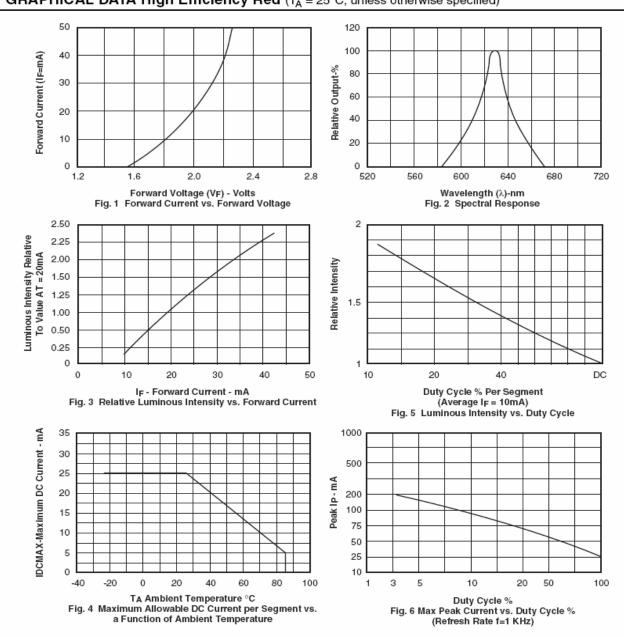

- (1) Data per individual LED element
- (2) Luminous intensity (µcd) = average light output per segment
- (3) B = breakdown

Bright Red MSQC6110W, MSQC6140W High Efficiency Red MSQC6910W, MSQC6940W Green MSQC6410W, MSQC6440W


SCHEMATICS

Bright Red MSQC6110W, MSQC6140W High Efficiency Red MSQC6910W, MSQC6940W Green MSQC6410W, MSQC6440W

GRAPHICAL DATA Bright Red (T_A = 25°C, unless otherwise specified)


Bright Red MSQC6110W, MSQC6140W High Efficiency Red MSQC6910W, MSQC6940W Green MSQC6410W, MSQC6440W

GRAPHICAL DATA Green (T_A = 25°C, unless otherwise specified) 100 40 Forward Current (IF=mA) Relative Output-% 80 30 60 20 40 10 20 0 0 720 1.2 520 560 Forward Voltage (V_F) - Volts Fig. 1 Forward Current vs. Forward Voltage Wavelength (λ)-nm Fig. 2 Spectral Response 2.50 2 Luminous Intensity Relative To Value AT = 20mA 2.25 2.00 Relative Intensity 1.50 1.25 1.5 1.00 0.50 0.25 0 10 DC 0 10 20 40 30 20 40 IF - Forward Current - mA **Duty Cycle % Per Segment** (Average I_F = 10mA) Fig. 5 Luminous Intensity vs. Duty Cycle Fig. 3 Relative Luminous Intensity vs. Forward Current IDCMAX-Maximum DC Current - mA 35 1000 30 500 25 Peak Ip - mA 20 200 100 15 75 10 50 5 25 0 10 -40 0 20 40 60 80 100 10 20 50 TA Ambient Temperature °C Duty Cycle % Fig. 6 Max Peak Current vs. Duty Cycle % Fig. 4 Maximum Allowable DC Current per Segment vs. a Function of Ambient Temperature (Refresh Rate f=1 KHz)

Bright Red MSQC6110W, MSQC6140W High Efficiency Red MSQC6910W, MSQC6940W Green MSQC6410W, MSQC6440W

GRAPHICAL DATA High Efficiency Red (T_A = 25°C, unless otherwise specified)

Bright Red MSQC6110W, MSQC6140W High Efficiency Red MSQC6910W, MSQC6940W Green MSQC6410W, MSQC6440W

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1.Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.