Philips Semiconductors Product specification

16-bit bus transceiver with 30 Ω series termination resistors (3-State)

74ABT162245A 74ABTH162245A

FEATURES

- 16-bit bidirectional bus interface
- Power-up 3-State
- Multiple V_{CC} and GND pins minimize switching noise
- 3-State buffers
- Output capability: +12mA/-32mA
- Latch-up protection exceeds 500mA per JEDEC Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200V per Machine Model
- Same part as 74ABT16245A-1
- 74ABTH162245A incorporates bus hold data inputs which eliminate the need for external pull-up resistors to hold unused inputs
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs

DESCRIPTION

The 74ABT162245A high-performance BiCMOS device combines low static and dynamic power dissipation with high speed.

The 74ABT162245A device is a 16-bit transceiver featuring non-inverting 3-State bus compatible outputs in both send and receive directions. The control function implementation minimizes external timing requirements. The device features two Output Enable (1ŌE, 2ŌE) inputs for easy cascading and two Direction (1DIR, 2DIR) inputs for direction control.

The 74ABT162245A is designed with 30 ohm series resistance in both the upper and lower output structures on both A and B ports. This design reduces line noise in applications such as memory address drivers, clock drivers, and bus receiver/transmitters.

The 74ABT162245A is the same as the 74ABT16245A-1. The part number has been changed to reflect industry standards

Two options are available, 74ABT162245A which does not have the bus hold feature and the 74ABTH162245A which incorporates the bus hold feature.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS T _{amb} = 25°C; GND = 0V	TYPICAL	UNIT
t _{PLH} t _{PHL}	Propagation delay nAx to nBx or nBx to nAx	$C_L = 50pF; V_{CC} = 5V$	2.0 3.0	ns
C _{IN}	Input capacitance	$V_I = 0V \text{ or } V_{CC}$	3	pF
C _{I/O}	I/O pin capacitance	$V_O = 0V$ or V_{CC} ; 3-State	7	pF
I _{CCZ}	Quiescent supply current	Outputs disabled; V _{CC} = 5.5V	300	nA
I _{CCL}	Quiescent supply current	Outputs Low; V _{CC} = 5.5V	10	mA

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
48-Pin Plastic SSOP Type III	-40°C to +85°C	74ABT162245A DL	BT162245A DL	SOT370-1
48-Pin Plastic TSSOP Type II	-40°C to +85°C	74ABT162245A DGG	BT162245A DGG	SOT362-1
48-Pin Plastic SSOP Type III	-40°C to +85°C	74ABTH162245A DL	BH162245A DL	SOT370-1
48-Pin Plastic TSSOP Type II	-40°C to +85°C	74ABTH162245A DGG	BH162245A DGG	SOT362-1

2

Philips Semiconductors Product specification

16-bit bus transceiver with 30Ω series termination resistors (3-State)

ABSOLUTE MAXIMUM RATINGS1, 2

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
I _{IK}	DC input diode current	V _I < 0	-18	mA
VI	DC input voltage ³		-1.2 to +7.0	V
I _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	output in Off or High state	-0.5 to +5.5	V
	DC output current	output in Low state	128	A
Гоит		output in High state	-64	mA mA
T _{stg}	Storage temperature range		-65 to 150	°C

NOTES

- 1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.
- 3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	UNIT	
STWIBUL	PARAMETER	Min	Max	UNII
V _{CC}	DC supply voltage	4.5	5.5	V
VI	Input voltage	0	V _{CC}	V
V _{IH}	High-level input voltage	2.0		V
V _{IL}	Low-level Input voltage		0.8	V
I _{OH}	High-level output current		-32	mA
I _{OL}	Low-level output current		12	mA
Δt/Δν	Input transition rise or fall rate	0	10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

DC ELECTRICAL CHARACTERISTICS

		TEST CONDITIONS		LIMITS				
SYMBOL	PARAMETER			T _{amb} = +25°C			T _{amb} = -40°C to +85°C	
			Min	Тур	Max	Min	Max	
V _{IK}	Input clamp voltage	V _{CC} = 4.5V; I _{IK} = -18mA		-0.9	-1.2		-1.2	V
		$V_{CC} = 4.5V$; $I_{OH} = -3mA$; $V_I = V_{IL}$ or V_{IH}	2.5	2.9		2.5		V
V _{OH}	High-level output voltage	$V_{CC} = 5.0V$; $I_{OH} = -3mA$; $V_I = V_{IL}$ or V_{IH}		3.4		3.0		V
		$V_{CC} = 4.5V$; $I_{OH} = -32mA$; $V_I = V_{IL}$ or V_{IH}	2.0	2.4		2.0		V
	Low-level output voltage	V_{CC} = 4.5V; I_{OL} = 8mA; V_{I} = V_{IL} or V_{IH}		0.46	0.65		0.65	V
V _{OL}	Low-level output voltage	V_{CC} = 4.5V; I_{OL} = 12mA; V_I = V_{IL} or V_{IH}		0.50	0.80		0.80	V
II	Input leakage current	$V_{CC} = 5.5V; V_I = GND \text{ or } 5.5V$ Control pins		±0.01	±1.0		±1.0	μА
	Bus hold current	V _{CC} = 4.5V; V _I = 0.8V	50			50		
I _{HOLD}	A and B inputs ⁴	V _{CC} = 5.5V; V _I = 2.0V				-75		μΑ
	74ABTH162245A	$V_{CC} = 5.5V; V_I = 0 \text{ to } 5.5V$						
I _{OFF}	Power-off leakage current	$V_{CC} = 0.0V$; V_O or $V_1 \le 4.5V$		±5.0	±100		±100	μΑ
I _{PU} /I _{PD}	Power-up/down 3-State output current ³	V_{CC} = 2.0V; V_{O} = 0.5V; V_{I} = GND or V_{CC} ; V_{OE} = Don't care		±5.0	±50		±50	μА
I _{IH} +I _{OZH}	3-State output High current	V_{CC} = 5.5V; V_O = 5.5V; V_I = V_{IL} or V_{IH}		0.5	10		10	μА
I _{IL} +I _{OZL}	3-State output Low current	V_{CC} = 5.5V; V_O = 0.0V; V_I = V_{IL} or V_{IH}		-0.5	-10		-10	μΑ
I _{CEX}	Output high leakage current	$V_{CC} = 5.5V; V_{O} = 5.5V; V_{I} = GND \text{ or } V_{CC}$		5.0	50		50	μΑ
I _O	Output current ¹	V _{CC} = 5.5V; V _O = 2.5V	-50	-92	-180	-50	-180	mA
I _{CCH}		V_{CC} = 5.5V; Outputs High, V_I = GND or V_{CC}	5	0.3	0.70		0.70	mA
I _{CCL}	Quiescent supply current	V_{CC} = 5.5V; Outputs Low, V_I = GND or V_{CC}		10	19		19	mA
I _{CCZ}		V_{CC} = 5.5V; Outputs 3-State; V_{I} = GND or V_{CC}		0.3	0.70		0.70	mA
	Additional supply current per input pin ²	Outputs enabled, one data input at 3.4V, other inputs at V_{CC} or GND; V_{CC} = 5.5V		400	700		700	μА
		Outputs 3-State, one data input at 3.4V, other inputs at V_{CC} or GND; V_{CC} = 5.5V 74ABT162245A		1.0	50		50	μΑ
Δl _{CC}		Outputs 3-State, one data input at 3.4V, other inputs at V_{CC} or GND; V_{CC} = 5.5V 74ABTH162245A		100	250		250	μΑ
		Control pins, outputs disabled, one enable input at 3.4V, other inputs at V _{CC} or GND; V _{CC} = 5.5V		400	700		700	μΑ

NOTES:

- 1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
- 2. This is the increase in supply current for each input at 3.4V.

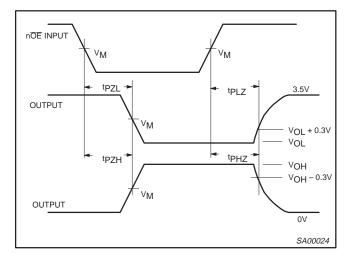
 3. This parameter is valid for any V_{CC} between 0V and 2.1V, with a transition time of up to 10msec. From $V_{CC} = 2.1V$ to $V_{CC} = 5 \pm 10\%$ a transition time of up to 100 µsec is permitted.

 4. This is the bus hold overdrive current required to force the input to the opposite logic state.

16-bit bus transceiver with 30Ω series termination resistors (3-State)

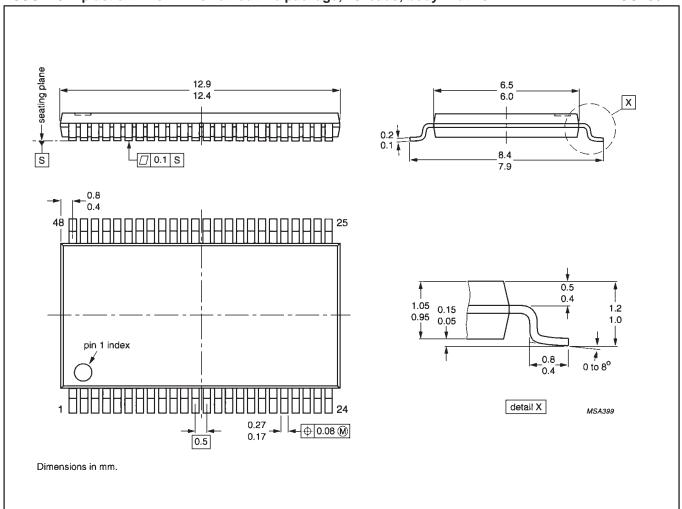
AC CHARACTERISTICS

GND = 0V; t_R = t_F = 2.5ns; C_L = 50pF, R_L = 500 Ω


	PARAMETER	WAVEFORM	LIMITS					
SYMBOL			$T_{amb} = +25$ °C $V_{CC} = +5.0$ V			$T_{amb} = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $V_{CC} = +5.0\text{V } \pm 0.5\text{V}$		UNIT
			Min	Тур	Max	Min	Max	
t _{PLH} t _{PHL}	Propagation delay nAx to nBx or nBx to nAx	1	1.0 1.5	2.0 3.0	3.3 4.5	1.0 1.5	3.5 4.9	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	2	1.5 2.0	3.1 5.0	4.3 6.1	1.5 2.0	5.0 7.0	ns
t _{PHZ}	Output disable time from High and Low level	2	1.7 1.5	3.5 3.2	4.8 4.5	1.7 1.5	5.4 4.9	ns

AC WAVEFORMS

 $V_M = 1.5V$, $V_{IN} = GND$ to 3.0V


Waveform 1. Input to Output Propagation Delays

Waveform 2. 3-State Output Enable and Disable Times

TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1mm

SOT362-1

