FEATURES

Easy to use

Gain set with one external resistor
(Gain range 1 to $\mathbf{1 0 , 0 0 0)}$
Wide power supply range ($\pm 2.3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$)
Higher performance than 3 op amp IA designs
Available in 8-lead DIP and SOIC packaging
Low power, 1.3 mA max supply current
Excellent dc performance (B grade)
$50 \mu \mathrm{~V}$ max, input offset voltage
$0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max, input offset drift
1.0 nA max, input bias current

100 dB min common-mode rejection ratio ($\mathrm{G}=10$)
Low noise
$9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ @ 1 kHz , input voltage noise
$0.28 \mu \mathrm{~V}$ p-p noise (0.1 Hz to 10 Hz)

Excellent ac specifications

120 kHz bandwidth $(\mathrm{G}=100)$
$15 \mu \mathrm{~s}$ settling time to 0.01%

APPLICATIONS

Weigh scales
ECG and medical instrumentation
Transducer interface
Data acquisition systems
Industrial process controls
Battery-powered and portable equipment

Figure 2. Three Op Amp IA Designs vs. AD620

CONNECTION DIAGRAM

Figure 1. 8-Lead PDIP (N), CERDIP (Q), and SOIC (R) Packages

PRODUCT DESCRIPTION

The AD620 is a low cost, high accuracy instrumentation amplifier that requires only one external resistor to set gains of 1 to 10,000 . Furthermore, the AD620 features 8-lead SOIC and DIP packaging that is smaller than discrete designs and offers lower power (only 1.3 mA max supply current), making it a good fit for battery-powered, portable (or remote) applications.

The AD620, with its high accuracy of 40 ppm maximum nonlinearity, low offset voltage of $50 \mu \mathrm{~V}$ max, and offset drift of $0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max, is ideal for use in precision data acquisition systems, such as weigh scales and transducer interfaces.
Furthermore, the low noise, low input bias current, and low power of the AD620 make it well suited for medical applications, such as ECG and noninvasive blood pressure monitors.

The low input bias current of 1.0 nA max is made possible with the use of Superbeta processing in the input stage. The AD620 works well as a preamplifier due to its low input voltage noise of $9 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ at $1 \mathrm{kHz}, 0.28 \mu \mathrm{~V}$ p-p in the 0.1 Hz to 10 Hz band, and $0.1 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$ input current noise. Also, the AD620 is well suited for multiplexed applications with its settling time of $15 \mu \mathrm{~s}$ to 0.01%, and its cost is low enough to enable designs with one in-amp per channel.

Figure 3. Total Voltage Noise vs. Source Resistance

Rev. G
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SPECIFICATIONS

Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, unless otherwise noted.
Table 1.

		AD620A		AD620B		AD620S ${ }^{1}$			
Parameter	Conditions	Min	Typ Max	Min	Typ \quad Max	Min	Typ	Max	Unit

[^0]
ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	$\pm 18 \mathrm{~V}$
Internal Power Dissipation ${ }^{1}$	650 mW
Input Voltage (Common-Mode)	$\pm \mathrm{V}_{\mathrm{S}}$
Differential Input Voltage	25 V
Output Short-Circuit Duration	Indefinite
Storage Temperature Range (Q)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range (N, R)	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	
\quad AD620 (A, B)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\quad AD620 (S)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature Range	
\quad (Soldering 10 seconds)	$300^{\circ} \mathrm{C}$

${ }^{1}$ Specification is for device in free air:
8-Lead Plastic Package: $\theta_{\mathrm{JA}}=95^{\circ} \mathrm{C}$
8 -Lead CERDIP Package: $\theta_{\mathrm{JA}}=110^{\circ} \mathrm{C}$
8-Lead SOIC Package: $\theta_{\mathrm{JA}}=155^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other condition s above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-001-BA
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 50. 8-Lead Plastic Dual In-Line Package [PDIP]
Narrow Body ($\mathrm{N}-8$).
Dimensions shown in inches and (millimeters)

Figure 51. 8-Lead Ceramic Dual In-Line Package [CERDIP] (Q-8) Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 52. 8-Lead Standard Small Outline Package [SOIC]
Narrow Body (R-8)
Dimensions shown in millimeters and (inches)

AD620

ORDERING GUIDE

Model	Temperature Range	Package Option ${ }^{1}$
AD620AN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	N-8
AD620ANZ ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	N-8
AD620BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-8$
AD620BNZ ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	N-8
AD620AR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-8
AD620ARZ ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-8
AD620AR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	13" REEL
AD620ARZ-REEL2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	13" REEL
AD620AR-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	7" REEL
AD620ARZ-REEL7 ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	7" REEL
AD620BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-8
AD620BRZ ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-8
AD620BR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	13" REEL
AD620BRZ-RL ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	13" REEL
AD620BR-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	7" REEL
AD620BRZ-R7 ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	7" REEL
AD620ACHIPS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Die Form
AD620SQ/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Q-8

${ }^{1} \mathrm{~N}=$ Plastic DIP; Q = CERDIP; R = SOIC.
${ }^{2} Z=P b$-free part.

[^0]: ${ }^{1}$ See Analog Devices military data sheet for 883 B tested specifications.
 ${ }^{2}$ Does not include effects of external resistor R_{G}.
 ${ }^{3}$ One input grounded. G = 1 .
 ${ }^{4}$ This is defined as the same supply range that is used to specify PSR.

