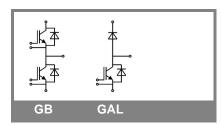


Trench IGBT Module

SKM 600GB126D SKM 600GAL126D

Preliminary Data

Features


- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications

- · AC inverter drives
- UPS
- · Electronic welders

Remarks

• $I_{DC} \le 500A$ for $T_{Terminal} = 100 \, ^{\circ}C$

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specifie					
Symbol	Conditions			Values	Units
IGBT					
V_{CES}	T _j = 25 °C T _i = 150 °C			1200	V
I _C	T _j = 150 °C	T _c = 25 °C		660	Α
		$T_c = 80 ^{\circ}C$		460	Α
I _{CRM}	I _{CRM} =2xI _{Cnom}			800	Α
V_{GES}				± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; Vces < 1200 V	T _j = 125 °C		10	μs
Inverse [Diode				•
I _F	T _j = 150 °C	$T_c = 25 ^{\circ}C$		490	Α
		$T_c = 80 ^{\circ}C$		340	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}			800	Α
I _{FSM}	$t_p = 10 \text{ ms}; \text{ sin.}$	T _j = 150 °C		2880	Α
Freewhe	eling Diode				
I _F	T _j = 150 °C	$T_c = 25 ^{\circ}C$		490	Α
		T_c = 80 °C		340	Α
I_{FRM}	I _{FRM} =2xI _{Fnom}			800	Α
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C		2880	Α
Module					
I _{t(RMS)}				500	Α
T _{vj}				- 40 + 150	°C
T _{stg}				- 40 + 125	°C
V _{isol}	AC, 1 min.			4000	V

Characteristics T _c = 25 °C, unless otherwise speci					ecified	
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 16 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,2	0,6	mA
		T _j = 125 °C				mA
V _{CE0}		T _j = 25 °C		1	1,2	V
		T _j = 125 °C		0,9	1,1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		1,8	2,4	mΩ
		T _j = 125°C		2,8	3,4	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 400 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,7	2,15	V
		$T_j = 125^{\circ}C_{chiplev.}$		2	2,45	V
C _{ies}				32		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		11		nF
C _{res}				2,2		nF
Q_G	V _{GE} = -8V - +20V			3600		nC
R _{Gint}	T _j = °C			1,88		Ω
t _{d(on)}				290		ns
t _r	$R_{Gon} = 2 \Omega$	V _{CC} = 600V		60		ns
E _{on}		I _C = 400A		39		mJ
t _{d(off)}	$R_{Goff} = 2 \Omega$	T _j = 125 °C		670		ns
t _f		$V_{GE} = \pm 15V$		80		ns
E _{off}				64		mJ
R _{th(j-c)}	per IGBT				0,055	K/W

Trench IGBT Module

SKM 600GB126D SKM 600GAL126D

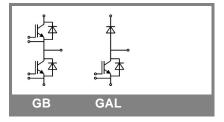
Preliminary Data

Features

- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications

- · AC inverter drives
- UPS
- · Electronic welders


Remarks

• I $_{DC} \le 500A$ for $T_{Terminal}$ = 100 °C

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse diode							
$V_F = V_{EC}$	I_{Fnom} = 400 A; V_{GE} = 0 V			1,6	1,8	V	
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,6	1,8	V	
V_{F0}		T _j = 25 °C		1	1,1	V	
		T _j = 125 °C		0,8	0,9	V	
r _F		T _j = 25 °C		1,5	1,8	mΩ	
		T _j = 125 °C		2	2,3	mΩ	
I _{RRM}	I _F = 400 A	T _j = 125 °C		475		Α	
Q_{rr}	di/dt = 7600 A/µs			96		μC	
E _{rr}	$V_{GE} = -15 \text{ V}; V_{CC} = 600 \text{ V}$			41		mJ	
$R_{\text{th(j-c)D}}$	per diode				0,125	K/W	
Freewhee	eling Diode						
$V_F = V_{EC}$	$I_{Fnom} = 400 \text{ A}; V_{GE} = 0 \text{ V}$			1,6	1,8	V	
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$ $T_j = 25 ^{\circ}C$		1,6	1,8	V	
V_{F0}		T _j = 25 °C		1	1,1	V	
		T _j = 125 °C		0,8	0,9	V	
r _F		T _j = 25 °C		1,5	1,8	V	
		T _j = 125 °C		2	2,3	V	
I _{RRM}	I _F = 400 A	T _j = 125 °C		475		Α	
Q_{rr}	di/dt = 7600 A/µs			96		μC	
E _{rr}	$V_{GE} = -15 \text{ V}; V_{CC} = 600 \text{ V}$			41		mJ	
$R_{\text{th(j-c)FD}}$	per diode				0,125	K/W	
Module							
L _{CE}				15	20	nΗ	
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ	
		T _{case} = 125 °C		0,5		mΩ	
R _{th(c-s)}	per module				0,038	K/W	
M _s	to heat sink M6		3		5	Nm	
M _t	to terminals M6		2,5		5	Nm	
w					325	g	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

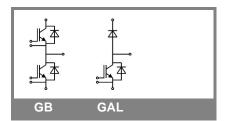
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

Trench IGBT Module

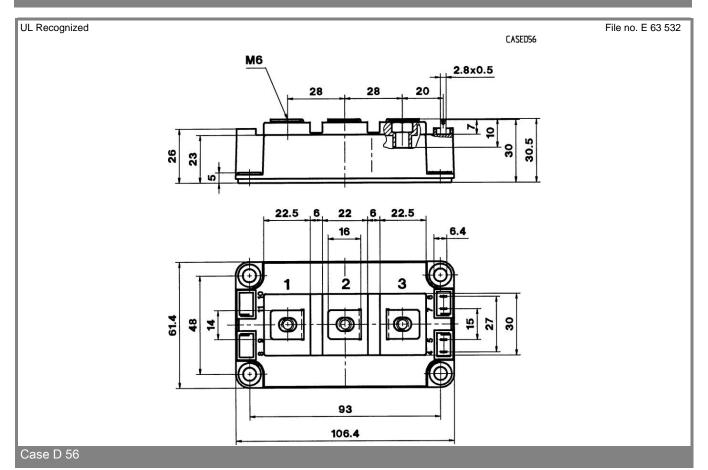
SKM 600GB126D SKM 600GAL126D

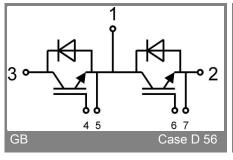
Preliminary Data

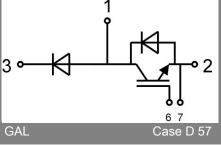
Features


- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications


- · AC inverter drives
- UPS
- · Electronic welders


Remarks


• I $_{DC} \le 500A$ for $T_{Terminal} = 100$ °C

Z _{th}			
Symbol	Conditions	Values	Units
Z R _i th(j-c)I			
R _i	i = 1	38	mk/W
R_{i}	i = 2	13	mk/W
R_i	i = 3	3,4	mk/W
R_i	i = 4	0,6	mk/W
tau _i	i = 1	0,0836	s
tau _i	i = 2	0,009	S
tau _i	i = 3	0,0024	S
tau _i	i = 4	0,0002	s
Z _{th(i a)D}			
Z R _i th(j-c)D	i = 1	75	mk/W
R _i	i = 2	39	mk/W
R_{i}	i = 3	9,5	mk/W
R_{i}	i = 4	1,5	mk/W
tau _i	i = 1	0,0327	s
tau _i	i = 2	0,0101	s
tau _i	i = 3	0,002	s
tau _i	i = 4	0,0003	s

