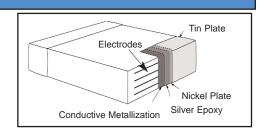

Fail-Safe Floating Electrode MLCC with Flexible Termination FF-CAP / X7R Dielectric



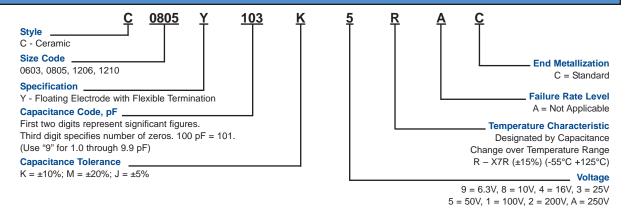
Floating (Cascading) Electrode Internal Design

Outline Drawing

Product Description

The FF-CAP incorporates two existing KEMET technologies; Floating Electrode (cascading electrode design) and Flexible Termination. The floating electrode component of these capacitors yields improved voltage and ESD performance over standard designs, and also mitigates the risk of low IR or short circuit failures associated with mechanical flex cracks. The flexible termination component incorporates a measure of flexibility to the capacitor, shifting flex stress away from the ceramic body and into the termination area.

The combination of these technologies ensures an increased measure of protection from board flex, offering up to 5mm of flex-bend capability. This provides for an enhanced level of mechanical flex crack protection for low to mid capacitance part types.


Dimensio	Dimensions – Millimeters (Inches)											
EIA Size Code	Metric Size Code	L Length	W Width	B Bandwidth	S Separation							
0603	1608	1.8 (.071) ± 0.15 (.006)	0.8 (.032) ± 0.15 (.006)	0.35 (.014) ± 0.15 (.006)	0.70 (.028)							
0805	2012	2.2 (.087) ± 0.20 (.008)	1.25 (.049) ± 0.20 (.008)	0.05 (.02) ± 0.25 (.010)	0.75 (.030)							
1206	3216	3.4 (.134) ± 0.20 (.008)	1.6 (.063) ± 0.20 (.008)	0.50 (.02) ± .25 (.010)	N/A							
1210	3225	3.4 (.134) ± 0.20 (.008)	2.5 (.098) ± 0.20 (.008)	0.50 (.02) ± .25 (.010)	N/A							

Refer to standard thickness dimensions and table located in the F3102 SMT catalog on pages 73, 74, and 77.

CAP	CAP	CAP	0603						0805									1206									1210								
(pF)	(nF)	CODE	6.3	10	0 16	25	50	100	200	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250		
150	0.15	151	Г	Γ	\top	Г	Г	Г		Г	Г	Г	Г	Г	Г	Г	Г		Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г		Г	П		
180	0.18	181		Γ		Г	Г												Г	Г	Г	Г	Г	Г	Г	Г	П			Γ		Г	П		
220	0.22	221		Γ	Т				Г										Г	Г	Г	Г	Г	Г	Г	Г	Г			Г		Г	П		
270	0.27	271		Γ	Т	Г	Г		Г		П	П							Г	Г	Г	Г	Г	Г		Г		Γ	Γ	Γ		Г	П		
330	0.33	331		Γ	Т	Г	Г		Г										Г	Г	Г	Г	Г	Г	Г	Г	Г			Γ		Г	П		
390	0.39	391		Γ	Т				Г										Г	Г	Г	Г	Г	Г	Г	Г	Г			Г		Г	П		
470	0.47	471		Γ	Т	Г	Г		П										Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г		Г	П		
560	0.56	561		Γ	Т	Г	Г													Г	Г	Г	Г	Г	П	Г	Г					Г	П		
680	0.68	681		Γ	Т	Γ	Π														Г			Г		Г	Г					П	П		
820	0.82	821		Γ	Т	Г	Г		П										Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г		Г	П		
1000	1.00	102																																	
1200	1.2	122																															П		
1500	1.5	152		Γ																													\Box		
1800	1.8	182																																	
2200	2.2	222		Γ		Г																													
2700	2.7	272		Γ																															
3300	3.3	332																																	
3900	3.9	392																																	
4700	4.7	472																																	
5600	5.6	562																																	
6800	6.8	682																																	
8200	8.2	822																																	
10000	10	103		L	┸																														
12000	12	123																																	
15000	15	153																																	
18000	18	183		L	┸																														
22000	22	223		L				L	L							L																			
27000	27	273	\Box	L				L							L		\bigsqcup																		
33000	33	333	$oxed{oxed}$	L	\perp	\perp	$oxed{oxed}$	L	\perp						L	$oxed{oxed}$	Ш							$oxed{oxed}$	$oxed{oxed}$										
39000	39	393	$oxed{oxed}$	L	\perp	$oxed{oxed}$	$oxed{oxed}$	L	$oxed{oxed}$						L	$oxed{oxed}$	Ш							$oxed{oxed}$	$oxed{oxed}$										
47000	47	473	L	L	\perp			L							L		Ш								oxed										
56000	56	563	$oxed{oxed}$	L	\perp	\perp	$oxed{oxed}$	L	L						L	$oxed{oxed}$	Ш							$oxed{oxed}$	$oxed{oxed}$										
68000	68	683	\Box	L				L			L	L		L	L	L	\bigsqcup						$oxedsymbol{oxed}$	L	$oxedsymbol{oxed}$								Ш		
82000	82	823	\Box	L				L						L			\bigsqcup						$oxedsymbol{oxed}$		$oxed{oxed}$								Ш		
100000	100	104	$oxed{oxed}$	L	\perp	\perp	$oxed{oxed}$	L	L	L	$oxed{oxed}$	$oxed{oxed}$	$oxed{oxed}$	L	L	$oxed{oxed}$	Ш						$oxed{oxed}$	$oxed{oxed}$	$oxed{oxed}$							$oxedsymbol{oxed}$	Ш		
120000	120	124	\Box	L		L	L	L			L	L		L	L	L	\bigsqcup						$oxedsymbol{oxed}$	L	$oxed{\Box}$								Ш		
150000	150	154	\Box	L				L			L						\square		L			L	$oxedsymbol{oxed}$	L	$oxed{\Box}$							\Box	Ш		
180000	180	184	\Box	L	L	L	L	L	L	L	L	L	Ĺ	L	L	Ĺ	\bigsqcup		Ĺ	\Box	Ĺ	L	$oxedsymbol{oxed}$	L	$oxedsymbol{oxed}$							\Box	Ш		
220000	220	224		L	\perp			L														L										$ldsymbol{f L}$	Ш		

Ordering Information

Electrical Parameters

As detailed in the KEMET Surface Mount Catalog F3102 for X7R, with following specific requirements based on room temperature (25°C) parameters:

- Operating Range: -55°C to +125°C, with no-bias capacitance shift limited to ± 15% over that range.
- Insulation Resistance (IR) measured after 2 minutes at rated voltage @ 25°C: Limit is 1,000 megohm microfarads or 100 gigohm, whichever is less.
- Capacitance and Dissipation Factor (DF) measured at 1kHz and 1 Vrms.
 DF Limits are:

50 - 250 Volts	2.5%
16 - 25 Volts	3.5%
6.3 - 10 Volts	5.0%

Soldering Process

These components are suitable for reflow and wave soldering. All parts incorporate the standard KEMET barrier layer of pure nickel, with an overplate of pure tin to provide excellent solderability as well as resistance to leaching.

Marking

These chips will be supplied unmarked. If required, they can be laser-marked as an extra option. Details on the marking format are included in KEMET Surface Mount catalog F3102.

Qualification/Certification

AEC-Q200 Rev. C - Automotive RoHS 6 - 100% tin termination

In general, the information in the KEMET Surface Mount catalog F3102 applies to these capacitors. The information in this bulletin supplements that in the catalog.