Photologic® Slotted Optical Switch OPB460, OPB470, OPB480, OPB490 Series

Description:

The OPB460, OPB470, OPB480 and OPB490 series of Photologic® photo integrated circuit switches provide optimum flexibility for the design engineer. Building from a standard housing with a $0.125^{\prime \prime}(3.180 \mathrm{~mm})$ wide slot, a user can specify the type and polarity of TTL output, discrete shell material, aperture width and choice of mounting configurations. OPB460 through OPB473 have 0.425 " (10.795 mm) PCBoard leads with 0.320 " (8.1 mm) spacing. OPB480 through OPB493 have 24 " (609 mm) 26 AWG wires (UL approved wires).

All devices in this series exhibit performance over supply voltages ranging from 4.5 V to 16.0 V , and may be specified as buffered or inverted with 10 kW Pull-up or Open Collector output. Devices are also TTI/LSTTL compatible and can drive up to 10 TTL loads.

Custom electrical, wire and cabling and connectors are available. Contact your local representative or OPTEK for more information.

Applications:

- Mechanical switch replacement
- Speed indication (tachometer)
- Mechanical limit indication
- Edge sensing

Color-Pin	Description
Red-1	Anode
Black-2	Cathode
White-3	Vcc
Blue-4	Output
Green-5	Ground

dIMENSIONS ARE IN: [MILLIMETERS] INCHES

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Storage \& Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Soldering Temperature [1/16 inch $(1.6 \mathrm{~mm})$ from the case for 5 sec. with soldering iron] ${ }^{(1)}$	$260^{\circ} \mathrm{C}$

Input Infrared LED

Supply Voltage, $\mathrm{V}_{\text {cc }}$ (not to exceed 3 seconds)	18 V
Diode Forward DC Current	40 mA
Diode Reverse DC Voltage	2 V
Input Diode Power Dissipation ${ }^{(2)}$	75 mW

Output Photologic ${ }^{\circledR}$

Voltage at Output Lead (Open Collector Output)	25 V
Output Photologic $®$ Power Dissipation ${ }^{(3)}$	200 mW

Total Device Power Dissipation ${ }^{(4)} \quad 275 \mathrm{~mW}$

Notes:
(1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
(2) Derate linearly $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ (OPB460, OPB470) or derate linearly $1.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ (OPB480, OPB490).
(3) Derate linearly $1.50 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ (OPB460, OPB470) or derate linearly $1.64 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ (OPB480, OPB490).
(4) Derate linearly $3.17 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ (OPB460, OPB470) or derate linearly $3.45 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ (OPB480, OPB490).
(5) The OPB460/OPB470 series are terminated with 0.020 " square leads designed for printed circuit board mounting.
(6) The OPB480/OPB490 series of switches are terminated with 24 " (609.600 mm) of 7 -strand 26 AWG, UL rated insulated wire on each terminal. Insulation colors and functions are: red (anode), black (cathode), white (V_{cc}), blue (output) and green (ground). Other wire lengths and/or colors in addition to customer selected connectors are available. Contact your local representative or call the factory.

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode						
V_{F} Forward Voltage - - 1.7 V $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ I_{R} Reverse Current - - 100 $\mu \mathrm{~A}$ $\mathrm{~V}_{\mathrm{R}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						

Output Photologic® Sensor

V_{Cc}	Operating DC Supply Voltage	4.5	-	16	V	
$I_{\text {CCL }}$	Low Level Supply Current: Buffered with 10k pull-up ${ }^{(1)}$ Buffered Open-Collector Output	-	-	7.5	mA	$\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
	Inverted with 10k pull-up: Inverted Open-Collector Output	-	-	7.5	mA	$\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{CCH}}$	High Level Supply Current: Buffered with 10k pull-up Buffered Open-Collector Output	-	-	7.5	mA	$\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$
	Inverted with 10k pull-up: Inverted Open-Collector Output	-	-	7.5	mA	$\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
Vol	Low Level Output Voltage: Buffered with 10k pull-up Buffered Open-Collector Output	-	-	0.4	V	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$
	Inverted with 10k pull-up: Inverted Open-Collector Output	-	-	0.4	V	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}^{(1)}$
V_{OH}	High Level Output Voltage: Buffered with 10k pull-up	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & -1.5 \end{aligned}$	-	-	V	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 16 V , No Load, $\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$
	Inverted with 10k pull-up: Inverted Open-Collector Output ${ }^{(1)}$	$\begin{aligned} & V_{\mathrm{cc}} \\ & -1.5 \end{aligned}$	-	-	V	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 16 V , No Load, $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$
$\mathrm{IOH}^{\text {a }}$	High Level Output Voltage: Buffered Open-Collector Output	-	-	14	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OH}}=25 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
	Inverted with 10k pull-up: Inverted Open-Collector Output ${ }^{(1)}$	-	-	14	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OH}}=25 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{F}(+)}$	LED Positive-Going Threshold Current	-	-	10	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{F}(+) \mathrm{I}_{\mathrm{F}(-)}}$	Hysteresis	-	1.4	-	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	-	50	-	ns	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0$ or 12 mA
$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay	-	3	-	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=300 \Omega$ to $5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Notes:
(1) Normal application would be with light source blocked, simulated by $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$.
(2) All parameters tested using pulse technique.

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

