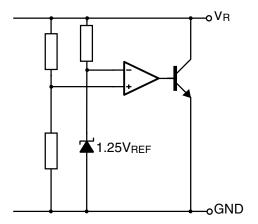
PRECISION 2.45 VOLT VOLTAGE REFERENCE

DEVICE DESCRIPTION

The ZRA245 uses a bandgap circuit design to achieve a precision voltage reference of 2.45 volts. The device is available in small outline surface mount packages, ideal for applications where space saving is important.

The ZRA245 design provides a stable voltage without an external capacitor and is stable with capacitive loads. The ZRA245 is recommended for operation between 2mA and 120mA.


FEATURES

- Small outline SOT23, SO8 and TO92 style package
- No stabilising capacitor required
- Typical T_C 15ppm/°C
- Typical slope resistance 0.26Ω
- \pm 3% , 2% and 1% tolerance
- Industrial temperature range
- Operating current 2mA to 120mA

APPLICATIONS

- Battery powered and portable equipment.
- Metering and measurement systems.
- Instrumentation.
- Test equipment.
- Data acquisition systems.
- Precision power supplies.

SCHEMATIC DIAGRAM

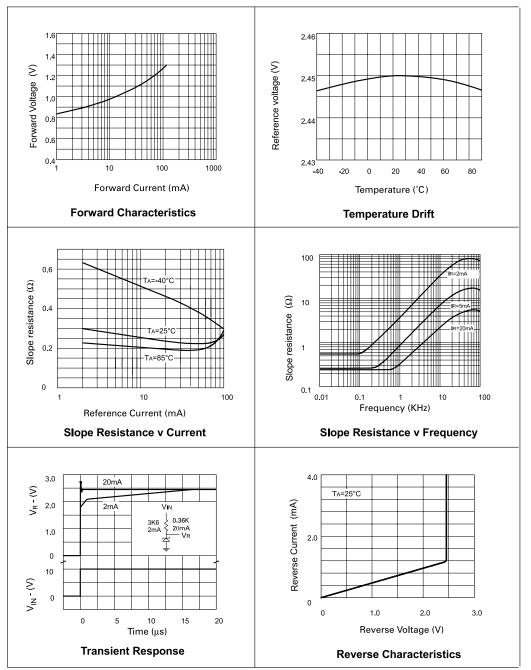
ABSOLUTE MAXIMUM RATING

Reverse Current	200mA	Power Dissipation (T _{amb} =25°C)		
Forward Current	25mA	SOT23	330mW	
Operating Temperature	-40 to 85°C	E-Line, 3 pin (TO92)	500mW	
Storage Temperature	-55 to 125°C	E-Line, 2 pin (TO92)	500mW	
		S08	625mW	

ELECTRICAL CHARACTERISTICS TEST CONDITIONS (Unless otherwise stated) T_{amb} =25°C

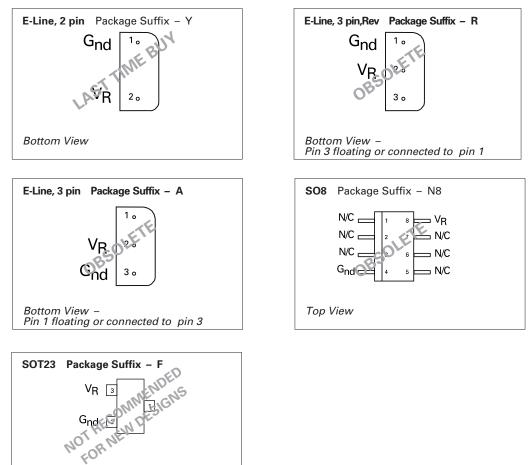
SYMBOL	PARAMETER	CONDITIONS	LIMITS		TOL. %	UNITS	
			MIN.	TYP.	MAX.		
V _R	Reverse Breakdown Voltage	I _R =5mA	2.43 2.40 2.38	2.45 2.45 2.45 2.45	2.47 2.50 2.52	1 2 3	V
IMIN	Minimum Operating Current				2		mA
IR	Recommended Operating Current		2		120		mA
T _C †	Average Reverse Breakdown Voltage Temp. Co.	I _{R(min)} to		15	50		ppm/°C
R _S §	Slope Resistance	^I R(max)		0.26	0.5		Ω
Z _R	Reverse Dynamic Impedance	IR =5mA f =100Hz IAC=0.1 IR		0.28	1		Ω
E _N	Wideband Noise Voltage	I _R = 5mA f = 10Hz to 10kHz		65			μV(rms)

$$T_{c} = \frac{(V_{R(max)} - V_{R(min)}) \times 1000000}{V_{R} \times (T_{(max)} - T_{(min)})}$$


Note: V_{R(max)} - V_{R(min)} is the maximum deviation in reference voltage measured over the full operating temperature range.

$$\$ \quad R_s = \frac{V_R Change(I_{R(MIN)} to I_{R(MAX)})}{I_{R(MAX)} - I_{R(MIN)}}$$

ISSUE 4 — JANUARY 2006


2

TYPICAL CHARACTERISTICS

CONNECTION DIAGRAMS

Top View – Pin 1 floating or connected to pin 2

ORDERING INFORMATION

Part No	Tol. %	Package	Partmark
ZRA245A03	3	E-Line •	ZRA24503
ZRA245A02	2	E-Line •	ZRA24502
ZRA245A01	1	E-Line •	ZRA24501
ZRA245F03	3	SOT23	24A
ZRA245F02	2	SOT23	24B
ZRA245F01	1	SOT23	24C
ZRA245N803	3	SO8	ZRA24503
ZRA245N802	2	SO8	ZRA24502
ZRA245N801	1	SO8	ZRA24501

Part No	Tol. %	Package	Partmark
ZRA245R03	3	E-Line *	ZRA245R3
ZRA245R02	2	E-Line *	ZRA245R2
ZRA245R01	1	E-Line *	ZRA245R1
ZRA245Y03	3	E-Line †	ZRA24503
ZRA245Y02	2	E-Line †	ZRA24502
ZRA245Y01	1	E-Line t	ZRA24501

E-Line 3 pin Reversed E-Line 2 pin E-Line 3 pin *

t

© Zetex Semiconduct	tors plc 2006
---------------------	---------------

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd	Zetex Semiconductors plc
Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza Tower 1	Zetex Technology Park
D-81673 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Chadderton, Oldham, OL9 9LL
Germany	USA	Hong Kong	United Kingdom
Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100 611	Telephone (44) 161 622 4444
Fax: (49) 89 45 49 49 49	Fax: (1) 631 360 8222	Fax: (852) 24250 494	Fax: (44) 161 622 4446
<u>europe.sales@zetex.com</u>	<u>usa.sales@zetex.com</u>	<u>asia.sales@zetex.com</u>	<u>hq@zetex.com</u>

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to $\underline{www.zetex.com}$

