High Voltage PIN Diode Driver

Features

- Processed with $\mathrm{HVCMOS}^{\circledR}$ technology
- 5.0 V CMOS logic - low power dissipation
- DMOS output voltage up to 220 V
- Low power level shifting -2.5 to 220 V
- Source current 1.7 mA
- Output fault detection
- Latched data output

General Description

The HV3922 is a monolithic, high voltage quad-output driver that is designed to be used in conjunction with the Supertex VN2222NC, a separate N-channel DMOS FET quad array, whose device characteristics are briefly described below. Together, these devices perform a 220 V pushpull function that is especially suited for driving PIN diodes in applications such as frequency-hopping radios, microwave communication systems and phased array radar.

Used as a microwave or RF switch, the HV3922 has 4 high voltage P channel outputs: PD0, PD1, PD2 and PD3. Additional controls are Chip Select $(\overline{\mathrm{CS}})$ and Output Enable ($\overline{\mathrm{OE}})$ functions. The HV3922 also has an output fault detection function that protects the outputs from damage by putting them into a high impedance state when a short is detected. The HV3922 provides 4 low voltage outputs - DRV0, DRV1, DRV2 and DRV3 - that drive the gates of the 4 N -channel FETs.

The VN2222NC is an N-channel DMOS FET quad array recommended for use in conjunction with HV3922 outputs to form four 220V push-pull outputs. Each of the four devices has a $\max R_{\mathrm{DS}(O \mathrm{O})}$ of 1.25Ω, min $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$ of 5.0 amps , and $\mathrm{BV}_{\text {Dss }}$ of 220 V .

Typical Application Circuit

Ordering Information

Device	Package Options		
	20-Lead Ceramic Side-Brazed .980x.280in body .200in height (max) 100in pitch	28-Lead Quad Cerpac .450x.450in body 190in height (max) .050in pitch	28-Lead PLCC .453x.453in body 180in height (max) 050in pitch
HV3922	HV3922C	HV3922DJ	HV3922PJ-G

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
Supply voltage, V_{CC}	-0.5 V to +7.0 V
Logic input voltage	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Supply voltage, V_{L}	-5.0 V
Supply voltage, V_{PP}	+230 V
Maximum power dissipation	0.8 W
Junction temperature	$+150^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating temperature range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead temperature	$+300^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability.

* 1.6 mm from case for 10 seconds.

Recommended Operating Conditions

Sym	Parameter	Min	Max	Units
V_{CC}	Logic supply voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	DC logic input voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{LL}	V_{LL} supply voltage	-3.5	-2.5	V
$\mathrm{~V}_{\mathrm{PP}}$	V_{PP} supply voltage	200	220	V
$\mathrm{IP}_{\mathrm{D}(\mathbb{N})} \mathrm{H}$	High-state continuous $\mathrm{P}_{\mathrm{D}(N)}$ source current	-	1.7	mA
$\mathrm{~T}_{\mathrm{A}}$	Ambient operating temp	-55	+125	${ }^{\circ} \mathrm{C}$
C_{L}	$\mathrm{D}_{\text {RV(N) })}$ load capacitance	0	0.006	$\mu \mathrm{~F}$

Notes:

1. $V_{P P}$ rise time $(d v / d t)$ should be less than $50 \mathrm{~V} / \mu \mathrm{S}$.
2. Power-up sequence should be the following:
A) Connect ground
B) Apply $V_{c c}$
C) Apply $V_{\text {L }}$
D) Apply $V_{P P}$
E) Set all inputs to a known state.

Power-down sequence should be the reverse of the above.

Pin Configurations

20-Lead Ceramic Side-Brazed (C) (top view)

28-Lead Quad Cerpac (DJ) (top view)

28-Lead PLCC (PJ) (top view)

Product Markings

20-Lead Ceramic Side-Brazed (C)

$Y Y=$ Year Sealed
WW = Week Sealed
L = Lot Number
Bottom Marking C = Country of Origin*

A = Assembler ID*
*May be part of top marking

Electrical Characteristics

DC Characteristics (Over recommended operating conditions unless otherwise noted)

Sym	Parameter	Min	Max	Units	Conditions
$\mathrm{I}_{\text {cca }}$	Quiescent $\mathrm{V}_{\text {cc }}$ supply current	-	1.0	mA	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$ all outputs open.
$\mathrm{I}_{\text {Lo }}$	Quiescent V_{LL} supply current	-	4.0	mA	$\mathrm{V}_{\mathrm{LL}}=-3.5 \mathrm{~V} \mathrm{D}_{\text {RVV(N) }}$ high or low.
$\mathrm{I}_{\text {PPQ }}$	Quiescent $\mathrm{V}_{\text {PP }}$ supply current	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{PP}}=220 \mathrm{~V} \mathrm{P}_{\mathrm{D}(\mathrm{N})}$ high or low.
I_{H}	High-level logic current	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {c }}$
$1{ }_{1}$	Low-level logic current	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
V_{FH}	High-level logic output voltage (fault detect)	4.4	-	V	$\mathrm{V}_{\text {cc }}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A}$
V_{FL}	Low-level logic output voltage (fault detect)	-	0.1	V	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$
$V_{\text {DH }}$	$\mathrm{P}_{\mathrm{D}(\mathrm{N})}$ high-level output voltage	198	-	V	$\mathrm{V}_{\mathrm{PP}}=203 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=1.7 \mathrm{~mA}$
	$D_{\text {RV(N) }}$ high-level output voltage	4.0	-	V	$\mathrm{V}_{\mathrm{cC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}$
V_{DL}	$\mathrm{D}_{\text {RV(N) }}$ low-output voltage	-	-2.3	V	$\mathrm{V}_{\mathrm{LL}}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DL}}=-500 \mu \mathrm{~A}$
$\mathrm{V}_{\text {TH }}$	Fault threshold trip point for $\mathrm{P}_{\mathrm{D}(\mathrm{N})}$ output high	$\begin{aligned} & 0.5 \times V_{\text {PP }} \\ & \text { fault } \end{aligned}$	$\begin{gathered} 0.85 \times V_{P P} \\ \text { fault } \end{gathered}$	V	$\mathrm{P}_{\mathrm{D}(\mathrm{N})}=\mathrm{HIGH}, \overline{\mathrm{OE}}=\mathrm{V}_{\text {cc }}$
$V_{T L}$	Fault threshold trip point for $\mathrm{P}_{\mathrm{D}(\mathrm{N})}$ output $\mathrm{Hi}-\mathrm{Z}$	$\mathrm{V}_{\text {(PDN) }}=0$	$\mathrm{V}_{\text {(PDN })}=25$	V	$\mathrm{P}_{\mathrm{D}(\mathrm{N})}=\mathrm{Hi}-\mathrm{Z}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{cc}}$

AC Characteristics (Over recommended operating conditions unless otherwise noted)

Sym	Parameter	Min	Max	Units	Conditions
$\mathrm{t}_{\text {wcs }}$	$\overline{\mathrm{CS}}$ pulse to latch data	100	-	ns	$V_{\text {cc }}=4.5 \mathrm{~V}, \overline{\mathrm{ENA}}=0 \mathrm{~V}$
$\mathrm{t}_{\text {wENA }}$	$\overline{\text { ENA }}$ pulse width to latch data	100	-	ns	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \overline{\mathrm{CS}}=0 \mathrm{~V}$
$\mathrm{t}_{\text {woe }}$	$\overline{\mathrm{OE}}$ pulse width	10	50	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \overline{\mathrm{OE}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PP}}=220 \mathrm{~V}, \\ & \mathrm{P}_{\mathrm{D}(\mathrm{~N})} \mathrm{LOAD}=20 \mathrm{~K} \Omega \text { to } \mathrm{GND} \end{aligned}$
		16	50	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=220 \mathrm{~V}, \\ & \mathrm{P}_{\mathrm{D},} \mathrm{LOAD}=20 \mathrm{~K} \Omega \text { and } \\ & 3000 \mathrm{pF} \text { to } \mathrm{GND} \end{aligned}$
t_{T}	Input transition rise and fall time	0	200	ns	$V_{\text {cc }}=4.5 \mathrm{~V}$
$\mathrm{t}_{\text {su1 }}$	Set-up time D_{N} and $\overline{C S}$ to $\overline{\text { ENA }}$	150	-	ns	$V_{\text {cc }}=4.5 \mathrm{~V}$
$\mathrm{t}_{\text {su2 }}$	Set-up time $\overline{\mathrm{ENA}}$ to $\overline{\mathrm{OE}}$ falling edge	150	-	ns	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$
t_{H}	Hold time	5.0	-	ns	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input capacitance	-	10	pF	Not tested, reference only
$\mathrm{t}_{\text {OH }}$	$\mathrm{P}_{\mathrm{D}(\mathrm{N})}$ transition time from $\overline{\mathrm{OE}}$ low to $\mathrm{P}_{\mathrm{D}(\mathrm{N})}$ high/low	1.0	50	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{PP}}=220 \mathrm{~V},$ $\mathrm{P}_{\mathrm{D}(\mathrm{N})}$ output loaded by $20 \mathrm{~K} \Omega$ and 3000 pF to GND

Function Table

Input					Output				
$\overline{\text { CS }}$	ENA	OE	Data $D_{(N)}$	$\begin{gathered} \mathbf{V}_{\mathrm{TH}} \\ \text { Level } \end{gathered}$	Internal Latch Q(n)	Internal FF QF(n)	$\mathrm{P}_{\mathrm{D}(\mathrm{N})}$	$\mathrm{D}_{\mathrm{RV}(\mathrm{N})}$	$\overline{\text { Fault }}$
H	X	H	X	Pass	Previous state $\mathrm{Q}(\mathrm{n}-1)$	Previous state QF(n-1)	Previous state	Previous state	VFH
X	H	H	X	Pass	Previous state $\mathrm{Q}(\mathrm{n}-1)$	Previous state QF(n-1)	Previous state	Previous state	VFH
L	L	H	H	Pass	Set	Previous state QF(n-1)	Previous state	Previous state	VFH
L	L	H	L	Pass	Reset	Previous state QF(n-1)	Previous state	Previous state	VFH
L	L	\downarrow	H	P/F	Set	Set	VDH	VDL	VFH
L	L	\downarrow	L	P/F	Reset	Reset	Hi-Z	VDH	VFH
H	X	\downarrow	X	P/F	Previous state $\mathrm{Q}(\mathrm{n}-1)$	Set if $\mathrm{Q}(\mathrm{n}-1)=$ Set	VDH	VDL	VFH
H	X	\downarrow	X	P/F	Previous state $\mathrm{Q}(\mathrm{n}-1)$	Reset if $\mathrm{Q}(\mathrm{n}-1)=$ Reset	Hi-Z	VDH	VFH
X	H	\downarrow	X	P/F	Previous state $\mathrm{Q}(\mathrm{n}-1)$	Set if $\mathrm{Q}(\mathrm{n}-1)=$ Set	VDH	VDL	VFH
X	H	\downarrow	X	P/F	Previous state $\mathrm{Q}(\mathrm{n}-1)$	Reset if $\mathrm{Q}(\mathrm{n}-1)=$ Reset	Hi-Z	VDH	VFH
X	X	H	X	Fail	X	X	Hi-Z	VDL	VFL
(At Power Up)									
X	X	H	X	P/F	Set	Set	VDH	VDL	VFH

Notes:

1. The output threshold is internally tested for each $P_{D(N)}$ output; the pass condition occurs when $\overline{O E}=H$ and:
A) $\quad P_{D(N)}$ driving high with output $>V_{T H(M A X)}$, or may occurs if $P_{D(N)}$ driving high and $V_{T H(M I N)}<$ output $<V_{T H(M A X)}$. OR
B) $\quad P_{D(N)}$ driving Low with output $<V_{T H(M I N)}$, or may occur if $P_{D(N)}$ driving low and $V_{T L(M I N)}<$ output $<V_{T L(M A X)}$.
2. $\overline{F A U L T}$ output $=V_{F L}$ indicates a fault has been detected in at least one of the $P_{D(N)}$ output loads when $\overline{O E}=H$. All other outputs shall function normally when a fault condition has been detected for one of the outputs. The $\overline{F A U L T}$ output shall remain in the low state, regardless of the state of the output which initiated the fault status, until the next falling edge of $\overline{O E}$. Whenever $\overline{O E}=L$, the $\overline{F A U L T}$ output is forced to $V_{F H}$, and the fault latch is reset. If the fault condition persists, the fault response repeats each time the $\overline{\mathrm{OE}}$ input is set to H.
3. Hi-Z indicates no current is sourced to output $P_{D(N)}$.
4. P/F indicates "Pass" or "Fail" fault threshold conditions.
```
\downarrow = ~ H i g h ~ t o ~ L o w ~ t r a n s i t i o n
H = High
L = Low
X = Don't care
```


Functional Block Diagram

Timing Diagram

Supertex Iinc. - 1235 Bordeaux Drive, Sunnyvale, CA 94089 - Tel: 408-222-8888 • www.supertex.com

Pin Description - 20-Lead Ceramic Side-Brazed (C)

Pin \#	Function	Pin \#	Function
1	D1	11	PD0
2	D2	12	DRV1
3	D3	13	DRV0
4	VLL	14	VPP
5	GND	15	VCC
6	DRV3	16	ENA
7	DRV2	17	OE
8	PD3	18	$\overline{\mathrm{CS}}$
9	PD2	19	FAULT
10	PD1	20	D0

Pin Description - 28-Lead Quad Cerpac (DJ)

Pin \#	Function	Pin \#	Function
1	D1	15	PD1
2	D2	16	PD0
3	D3	17	NC
4	NC	18	DRV1
5	VLL	19	DRV0
6	GND	20	NC
7	NC	21	VPP
8	DRV3	22	NC
9	DRV2	23	VCC
10	NC	24	ENA
11	PD3	25	$\overline{\mathrm{OE}}$
12	NC	26	$\overline{\mathrm{CS}}$
13	PD2	27	$\overline{\text { FAULT }}$
14	NC	28	D0

Pin Description - 28-Lead PLCC (PJ)

Pin \#	Function	Pin \#	Function
1	D1	15	PD1
2	D2	16	PD0
3	D3	17	NC
4	NC	18	DRV1
5	VLL	19	DRV0
6	GND	20	NC
7	NC	21	VPP
8	DRV3	22	NC
9	DRV2	23	VCC
10	NC	24	ENA
11	PD3	25	OE
12	NC	26	$\overline{\mathrm{CS}}$
13	PD2	27	FAULT
14	NC	28	D0

Supertex IInc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: 408-222-8888 • www.supertex.com

20-Lead Ceramic Side-Brazed Package Outline (C) .980x.280in. body, .200in. height (max), .100in. pitch

Top View

Side View

View B

View A - A

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	b	b1	D	E	E1	eA	eB	e	L
Dimension (inches)	MIN	. 085	. 025	. 015	. 045	. 980	. 300	. 280	$\begin{aligned} & .300 \\ & \text { REF } \end{aligned}$. $300{ }^{+}$	$\begin{aligned} & .100 \\ & \text { BSC } \end{aligned}$. 125
	NOM	-	-	-	-	-	-	-		-		-
	MAX	. 200	. 070	. 022	. 065	1.020	. 325	. 310		. 400		. 200

JEDEC Registration MS-015, Variation AE, Issue A, July, 1990.
\dagger This dimension differs from the JEDEC drawing.
Drawings not to scale.
Supertex Doc.\#: DSPD-20CDIPCNC, Version D041309.

28-Lead Quad Cerpac Package Outline (DJ)

 .450x.450in. body, .190in. height (max), .050in. pitch

Vertical Side View

Horizontal Side View

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	b1	D	D1	E	E1	e
Dimension (inches)	MIN	. 155	. 090	$\begin{aligned} & .060 \\ & \text { REF } \end{aligned}$. 017	. 026	. 485	. 430	. 485	. 430	$\begin{aligned} & .050 \\ & \text { BSC } \end{aligned}$
	NOM	. 172	. 100		. 019	. 029	. 490	. 450	. 490	. 450	
	MAX	. 190	. 120		. 021	. 032	. 495	. 465	. 495	. 465	

JEDEC Registration MO-087, Variation AA, Issue B, August, 1991.
Drawings not to scale.
Supertex Doc.\#: DSPD-28CERPACDJ, Version B090808.

28-Lead PLCC Package Outline (PJ)

 .453x.453in. body, .180in. height (max), .050in. pitch

Notes:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
2. Actual shape of this feature may vary.

Symbol		A	A1	A2	b	b1	D	D1	E	E1	e
Dimension (inches)	MIN	. 165	. 090	. 062	. 013	. 026	. 485	. 450	. 485	. 450	$\begin{aligned} & .050 \\ & \text { BSC } \end{aligned}$
	NOM	. 172	. 105	-	-	-	. 490	. 453	. 490	. 453	
	MAX	. 180	. 120	. 083	. 021	. 032	. 495	. 456	. 495	. 456	

[^0](The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)
Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an
adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the
replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications
are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com.

[^0]: JEDEC Registration MS-018, Variation AB, Issue A, June, 1993.
 Drawings not to scale.
 Supertex Doc. \#: DSPD-28PLCCPJ, Version A092408.

