32-Channel Serial to Parallel Converter With High Voltage Push-Pull Outputs

Features

- HVCMOS ${ }^{\circledR}$ technology
- Operating output voltage up to $+50 /-40 \mathrm{~V}$
- Shift register speed $40 \mathrm{MHz} @ \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
- Data speed up to $160 \mathrm{MHz} @ \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
- 32 high voltage outputs
- CMOS/TTL compatible

Applications

- High speed print head driver
- LCD driver

General Description

The HV610 is a 32 -channel high voltage, medium current driver IC. The outputs can be either at VPPS, VNN, HiZ, or HVGND.

Data is shifted through four parallel 8-bit shift registers on the low to high transition of the clock. A data output buffer is provided for cascading devices. Data is transferred to a 32-bit latch when logic level high is applied to the LE input. The CLR signal will reset both the shift register and the latch. Output states are controlled by POS, and NEG input signals, and by data in the latch. All outputs are tri-stated upon a logic high on the HiZ input signal. VPPLT is the high voltage power supply pin for the level translators, and should be at the same voltage level as VPPS.

Typical Application Diagram

Ordering Information

	64-Lead LQFP
Device	10.00x10.00mm body
	1.60 mm height (max)
	0.50 mm pitch
HV610	HV610FG-G

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
Supply voltage, V_{DD}	-0.5 V to 6 V
Supply voltage, $\mathrm{V}_{\mathrm{PPS},} \mathrm{V}_{\text {PPLT }}$	55 V
Supply voltage, V_{NN}	-45 V
Logic input levels	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Operating junction temperature range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}+150^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configuration

Product Marking

Bottom Marking

$Y Y=$ Year Sealed WW = Week Sealed
L = Lot Number
C = Country of Origin*
A = Assembler ID*
\qquad = "Green" Packaging
*May be part of top marking
Package may or may not include the following marks: Si or (it)
64-Lead LQFP (FG)

Recommended Operating Conditions

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{V}_{\text {DD }}$	Logic supply voltage	4.5	5.0	5.5	V	---
$\mathrm{V}_{\text {PPS }}$	Positive high voltage supply for $\mathrm{HV}_{\text {OUTPUT }}$ source	25	-	50	V	For $\mathrm{f}_{\text {OUT }}=200 \mathrm{kHz}$
$\mathrm{V}_{\text {PPLT }}$	Positive high voltage supply for level translators	$\mathrm{V}_{\text {PPS }}$	-	50	V	---
$\mathrm{V}_{\text {NN }}$	Negative high voltage supply	-15	-	-40	V	For $\mathrm{f}_{\text {OUT }}=200 \mathrm{kHz}$
HVGND	High voltage output ground	-5	-	+5	V	---
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0	-	V_{DD}	V	---
V_{IL}	Low-level input voltage	0		0.8	V	---
T_{A}	Operating ambient temperature	-40	-	+85	${ }^{\circ} \mathrm{C}$	---

Power-Up / Power-Down Sequence

Step	Description
1	Connect DGND and HVGND
2	Apply $\mathrm{V}_{\text {DD }}$
3	Set all inputs (Data, CLK, LE, POS, NEG, HiZ, etc.) to a known state
4	Apply $\mathrm{V}_{\text {NN }}$
5	Apply $\mathrm{V}_{\text {PPLT }}$
6	Apply $\mathrm{V}_{\text {PPS }}$

Power-down sequence should be the reverse of the above. To insure the safest power-up/down sequence, the intervals between power-up signals should be between 1 msec to 10 msec , after the previous signal changed 95% of its final level.

DC Electrical Characteristics

(Over recommended operating supply voltages and temperatures, unless otherwise noted.)

Sym	Parameter		Min	Typ	Max	Units	Conditions
I_{DD}	$\mathrm{V}_{\text {D }}$ supply current		-	-	15	mA	$\mathrm{f}_{\text {CLK }}=40 \mathrm{MHz}$
$\mathrm{I}_{\text {DDQ }}$	$V_{D D}$ quiescent supply current		-	-	0.1	mA	All logic inputs $=\mathrm{V}_{\mathrm{DD}}$ or 0 V
			-	-	2.2		Per each input at TTL level
$\mathrm{I}_{\text {PPS }}$	$\mathrm{V}_{\text {PPS }}$ supply current		-	-	412	mA	$C L=700 \mathrm{pF}, \mathrm{f}_{\text {out }}=200 \mathrm{kHz}$, all channels switching per $\mathrm{HV}_{\text {out }}$ waveform
$\mathrm{I}_{\text {PPSQ }}$	$\mathrm{V}_{\text {PPS }}$ quiescent supply current		-	-	100	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {PPS }}=50 \mathrm{~V}, \text { outputs static }, \\ & V_{\text {PPLT }}=50 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {PPLT }}$	$\mathrm{V}_{\text {PPLT }}$ supply current		-	-	17	mA	$\mathrm{f}_{\text {OUT }}=200 \mathrm{kHz}$
$\mathrm{I}_{\text {PPLTQ }}$	$\mathrm{V}_{\text {PPLTQ }}$ quiescent supply current		-	-	100	$\mu \mathrm{A}$	$V_{\text {PPS }}=50 \mathrm{~V}$, outputs static, $V_{\text {PPLT }}=50 \mathrm{~V}$
$\mathrm{I}_{\text {NN }}$	$\mathrm{V}_{\text {NN }}$ supply current		-	-	433	mA	$\mathrm{CL}=700 \mathrm{pF}, \mathrm{f}_{\text {OUT }}=200 \mathrm{kHz}$, all channels switching per $\mathrm{HV}_{\text {out }}$ waveform
$\mathrm{I}_{\text {NNQ }}$	$\mathrm{V}_{\text {NN }}$ quiescent supply current		-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {NN }}=-40 \mathrm{~V}$, outputs static
I_{H}	Logic input high current		-	-	50	$\mu \mathrm{A}$	$\mathrm{V}_{1 H}=\mathrm{V}_{\text {DD }}$
			-	-	50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IH }}=2.0 \mathrm{~V}$
$1{ }_{\text {IL }}$	Logic input low current		-	-	-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{LL}}=0 \mathrm{~V}$
				-	-50		$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$
I_{OL}	$\mathrm{D}_{\text {OUT }}$ low level logic	sink current	-	-	12	mA	$\mathrm{D}_{\text {OUT }}<0.8 \mathrm{~V}$
I_{OH}	$\mathrm{D}_{\text {OUT }}$ high level log	source current	-	-	-12	mA	$\mathrm{D}_{\text {OUT }}>2.0 \mathrm{~V}$
$\mathrm{V}_{\text {ОН }}$	High level output	$\mathrm{HV}_{\text {out }}$	$\mathrm{V}_{\text {PPs }}-10$	-	-	V	$\begin{aligned} & \text { IHV } \begin{array}{l} \text { OUT } \\ =-35 \mathrm{~mA}, \mathrm{~V}_{\text {PPS }}=+50 \mathrm{~V}, \\ \mathrm{~V}_{\text {PPLT }}=+50 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-40 \mathrm{~V} \end{array} \\ & \text { and } \end{aligned}$
		$\mathrm{D}_{\text {OUT }}$	$V_{D D}-1.0$	-	-		$1 \mathrm{D}_{\text {OUt }}=-15 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Low level output	HV_{o}	-	-	$\mathrm{V}_{\text {NN }}+10$	V	$\begin{aligned} & 1 \mathrm{HV} \mathrm{~V}_{\text {OUT }}=35 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PPS}}=+50 \mathrm{~V}, \\ & \mathrm{~V}_{\text {PPLT }}=+50 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-40 \mathrm{~V} \end{aligned}$
		$\mathrm{D}_{\text {out }}$	-	-	1.0		$\mathrm{ID}_{\text {out }}=15 \mathrm{~mA}$
$V_{\text {OMID }}$	Mid level output		-10	-	10	V	$\begin{aligned} & \mathrm{I}_{\mathrm{MID}}= \pm 35 \mathrm{~mA}, \mathrm{~V}_{\text {PPS }}=+50 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PPLT}}=+50 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$
$\mathrm{C}_{\text {DIN }}$	LV input capacitance		-	-	10	pF	---

AC Electrical Characteristics

(Over recommended operating supply voltages and temperatures, unless otherwise noted. $V_{P P S}=V_{P P L T} V_{D D}=5.0 \mathrm{~V}$.)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{f}_{\text {cLK }}$	Clock frequency	0	-	40	MHz	0 toV ${ }_{\text {DD }}$ clock input
		0	-	33		0 to 2.0 V clock input
$\mathrm{f}_{\text {OUT }}$	Output switching frequency switching waveform	-	-	200	KHz	$\begin{aligned} & \text { CL }=700 \mathrm{pf}, 5 \% \text { to } 95 \% \\ & \mathrm{~V}_{\text {PPLT }}=50 \mathrm{~V} \end{aligned}$
t_{c}	Clock high/low pulse width	10	-	-	ns	$0-V_{D D}$ logic signals
		10	-	-		0-2.0V logic signals

AC Electrical Characteristics (cont.)

(Over recommended operating supply voltages and temperatures, unless otherwise noted. $V_{P P S}=V_{P P L T}, V_{D D}=5.0 \mathrm{~V}$.)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{t}_{\text {sud }}$	Data setup time before clock rises	12.5	-	-	ns	$0-V_{D D}$ logic signals
		15	-	-		0-2.0V logic signals
$\mathrm{t}_{\text {HD }}$	Data hold time after clock rises	2.0	-	-	ns	---
$\mathrm{t}_{\text {suc }}$	LE from CLK setup time	15	-	-	ns	---
t_{LE}	LE pulse width	10	-	-	ns	---
$\mathrm{t}_{\text {woc }}$	Width of CLR, POS, NEG, HiZ pulses	500	-	-	ns	---
$\mathrm{t}_{\text {DHiz }}$	HiZ input to $\mathrm{HV}_{\text {out }} \mathrm{HiZ}$ state delay	-	-	400	ns	---
$\mathrm{t}_{\text {CLRH }}$	CLR input to $\mathrm{HV}_{\text {out }}$ delay	-	-	1.1	$\mu \mathrm{s}$	---
$\mathrm{t}_{\text {DCLR }}$	CLR input to $\mathrm{D}_{\text {OUT }}$ delay	5.0	-	50	ns	---
$t_{\text {D }}$	Clock positive edge to $\mathrm{D}_{\text {out }}$ delay	2.5	-	12.5	ns	$\mathrm{C}_{\text {LDoUT }}=30 \mathrm{pF}$
$\mathrm{t}_{\text {PHV }}$	Delay time from inputs for $\mathrm{HV}_{\text {out }}$ to start rise/fall	-	-	500	ns	$V_{\text {PPLT }}=50 \mathrm{~V}$
$\mathrm{t}_{\text {Hiz }}$	Output HiZ state before each transition	-	-	100	ns	$\mathrm{V}_{\text {PPLT }}=50 \mathrm{~V}$
$\mathrm{t}_{\text {HR }}$	Time for output to go from 95% of $V_{\text {PPS }} / V_{\text {NN }}$ to 99% of $V_{\text {PPS }} / V_{\text {NN }}$	-		0.5	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=700 \mathrm{pF}, \mathrm{HV}_{\mathrm{GND}} \text { to } \mathrm{V}_{\mathrm{PPS}}, \\ & \text { or } \mathrm{HV}_{\mathrm{GND}} \text { to } \mathrm{V}_{\mathrm{NN}} \text { transitions } \end{aligned}$
			-	1.0	$\mu \mathrm{s}$	$\begin{aligned} & C_{L}=700 \mathrm{pF}, \mathrm{~V}_{\text {PPP }} \text { to } V_{N N} \\ & \text { or } V_{N N} \text { to } V_{\text {PPS }} \text { transitions } \end{aligned}$
$t_{\text {HG }}$	Time for output to go from $\mathrm{HV}_{\text {GND }} \pm 1 \mathrm{~V}$ to within 1% of $\mathrm{HV}_{\text {GND }}$			0.5	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{CL}=700 \mathrm{pF}, \mathrm{~V}_{\text {NN }} \text { to } \mathrm{HV} V_{\text {GND }}, \\ & \text { or } \mathrm{V}_{\text {PPS }} \text { to } \mathrm{HV} \mathrm{GND}_{\text {GND }} \text { transitions } \end{aligned}$
$\mathrm{t}_{\text {RPN }}, \mathrm{t}_{\text {FPN }}$	Output rise/fall time (per function table3)		-	1.6	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{CL}=700 \mathrm{pF}, \mathrm{~V}_{\text {PPLT }}=\mathrm{V}_{\text {PPLT }}=50 \mathrm{~V}, \\ & \text { transitions between } \mathrm{V}_{\text {PPS }} \text { and } \mathrm{V}_{\text {NN }} \end{aligned}$
$\mathrm{t}_{\mathrm{RR}}, \mathrm{t}_{\mathrm{FR}}$	Output rise/fall time from $\mathrm{HV}_{\text {GND }}$ to 95% of $V_{\text {PPS }} / V_{\text {NN }}$	-	-	0.9	$\mu \mathrm{s}$	$\mathrm{CL}=700 \mathrm{pF}, \mathrm{V}_{\text {PPLT }}=\mathrm{V}_{\text {PPLT }}=50 \mathrm{~V}$
$\mathrm{t}_{\text {RG }}, \mathrm{t}_{\mathrm{FG}}$	Output rise/fall time from 95% of $V_{\mathrm{PPS}} / V_{\mathrm{NN}} \text { to } \mathrm{HV} \mathrm{G}_{\mathrm{GND}} \pm 1 \mathrm{~V}$	-	-	0.9	$\mu \mathrm{s}$	$\mathrm{CL}=700 \mathrm{pF}, \mathrm{V}_{\text {PPLT }}=\mathrm{V}_{\text {PPLT }}=50 \mathrm{~V}$
$\mathrm{t}_{\mathrm{ORPN}}$	Delay time from input edges to 95% of $\mathrm{HV}_{\text {out }}$ rise/fall (per function table 3)	-	-	1.8	$\mu \mathrm{s}$	$C L=700 \mathrm{pF}, \mathrm{~V}_{\text {PPLT }}=\mathrm{V}_{\text {PPLT }}=50 \mathrm{~V},$ $\text { transitions between } \mathrm{V}_{\text {PPS }} \text { and } \mathrm{V}_{\text {NN }}$
$\begin{aligned} & \mathrm{t}_{\mathrm{oRG}}, \\ & \mathrm{t}_{\mathrm{oFG}} \end{aligned}$	Delay time from input edges to 95% of $\mathrm{HV}_{\text {out }}$ rise/fall from $\mathrm{HV}_{\text {GND }}$ to $\mathrm{V}_{\text {PPS }}$ or V_{NN}, or from $\mathrm{V}_{\mathrm{PPS}} / V_{\mathrm{NN}}$ to within $\pm 1 \mathrm{~V}$ of $\mathrm{HV}_{\text {GND }}$	-	-	1.1	$\mu \mathrm{s}$	$\mathrm{CL}=700 \mathrm{pF}, \mathrm{~V}_{\mathrm{PPLT}}=\mathrm{V}_{\mathrm{PPLT}}=50 \mathrm{~V},$ transitions between $V_{\text {PPS }} / V_{\text {NN }}$ and $\mathrm{HV}_{\text {GND }}$
$\theta_{j a}$	Thermal resistance, junction to ambient	-	59	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	Mounted on 4-layer PCB board

Function Table 1 (S/R and $D_{\text {out }}$ of S / R one of four)

Inputs				Outputs	
Data ($\mathrm{n}-1$)	CLK	CLR	LE, POS, NEG, HiZ	S/R1...8(N)*	Data Out
L or H	L to H	L	X	$\begin{gathered} \mathrm{S} / \mathrm{R} 1=\mathrm{D}_{\text {IN }}(\mathrm{N}-1) \\ \mathrm{S} / \mathrm{R} 2=\mathrm{S} / \mathrm{R} 1(\mathrm{~N}-1) \\ \cdot \\ \mathrm{S} / \mathrm{R} 8=\mathrm{S} / \mathrm{R} 7(\mathrm{~N}-1) \end{gathered}$	S/R8(N-1)
X	L	L	X	S/R1..8(N-1)	$\mathrm{D}_{\text {OUT }}(\mathrm{N}-1)$
X	H	L	X	S/R1..8(N-1)	$\mathrm{D}_{\text {OUT }}(\mathrm{N}-1)$
X	X	H	X	L	L

Notes:
$H=$ high level, $L=$ low level, $X=$ irrelevant,
${ }^{*} D_{\text {IN }} 1$ to $D_{\text {IN }} 4=>1^{\text {st }} S / R 1 . .8$ to $4^{\text {th }} S / R 1 . .8$,
*1st $S / R 1$.. 8 to $4^{\text {th }}$ S/R1.. $8=D 1$..D8, D9..D16, D17..D24, D25..D32
Function Table 2 (Latch)

Inputs				Outputs
D1..32	LE	CLR	CLK, POS, NEG, HiZ	LD1..32
X	X	H	X	L
L or H	H	L	X	L or H
X	L	L	X	Unchanged

Function Table 3 (HV outputs)

Inputs								Outputs
POS	NEG	Hiz	CLK	LE	CLR	$\mathrm{D}_{\text {IN }}$	LD1.. 32	HV ${ }_{\text {out }} 1 . .32$
X	X	H	X	X	X	X	X	HiZ
H	H	L	X	L	L	X	H	HiZ
L	L	L	X	L	L	X	X	HVGND
X	X	L	X	L	L	X	L	HVGND
L	H	L	X	L	L	X	H	VNN
H	L	L	X	L	L	X	H	VPPS
X	X	L	X	X	H	X	X	HVGND

Functional Block Diagram

Input and Output Equivalent Circuits

High Voltage Outputs

Switching Waveforms

LQFP Pin Description

Pin \#	Function
1	VNN
2	$\mathrm{HV}_{\text {OUT }} 23$
3	$\mathrm{HV}_{\text {OUT }} 22$
4	$\mathrm{HV}_{\text {OUT }} 21$
5	$\mathrm{HV}_{\text {OUT }} 20$
6	$\mathrm{HV}_{\text {OUT }} 19$
7	$\mathrm{HV}_{\text {OUT }} 18$
8	$\mathrm{HV}_{\text {OUT }} 17$
9	$\mathrm{HV}_{\text {OUT }} 16$
10	$\mathrm{HV}_{\text {OUT }} 15$
11	$\mathrm{HV}_{\text {OUT }} 14$
12	$\mathrm{HV}_{\text {OUT }} 13$
13	$\mathrm{HV}_{\text {OUT }} 12$
14	$\mathrm{HV}_{\text {OUT }} 11$
15	$\mathrm{HV}_{\text {OUT }} 10$
16	$V_{N N}$

Pin \#	Function
17	HVGND
18	VPPS
19	$\mathrm{HV}_{\text {OUT }} 9$
20	$\mathrm{HV}_{\text {OUT }} 8$
21	HV ${ }_{\text {OUT }} 7$
22	$\mathrm{HV}_{\text {OUT }}{ }^{6}$
23	$\mathrm{HV}_{\text {OUT }}{ }^{5}$
24	$\mathrm{HV}_{\text {OUT }} 4$
25	$\mathrm{HV}_{\text {OUT }}{ }^{3}$
26	$\mathrm{HV}_{\text {OUT }}{ }^{2}$
27	$\mathrm{HV}_{\text {OUT }}{ }^{1}$
28	VNN
29	VPPS
30	HVGND
31	VPPLT
32	$\mathrm{D}_{\text {IN }} 1$

Pin \#	Function
33	$\mathrm{D}_{1 \mathrm{~N}} 2$
34	$\mathrm{D}_{\text {IN }} 3$
35	$\mathrm{D}_{\text {IN }} 4$
36	DGND
37	POS
38	NEG
39	HIZ
40	CLK
41	CLR
42	LE
43	VDD
44	DGND
45	NC
46	$\mathrm{D}_{\text {OUT }} 4$
47	$\mathrm{D}_{\text {OUT }} 3$
48	$\mathrm{D}_{\text {OUT }} 2$

Pin \#	Function
49	$\mathrm{D}_{\text {OUT }} 1$
50	VPPLT
51	HVGND
52	VPPS
53	VNN
54	$\mathrm{HV}_{\text {OuT }} 32$
55	$\mathrm{HV}_{\text {OUT }} 31$
56	$\mathrm{HV}_{\text {OUT }} 30$
57	$\mathrm{HV}_{\text {OUT }} 29$
58	$\mathrm{HV}_{\text {OUT }} 28$
59	HV ${ }_{\text {OUT }} 27$
60	HV ${ }_{\text {OUT }} 26$
61	HV ${ }_{\text {OUT }} 25$
62	$\mathrm{HV}_{\text {OUT }} 24$
63	VPPS
64	HVGND

64-Lead LQFP Package Outline (FG)

 $10.00 \times 10.00 \mathrm{~mm}$ body, 1.60 mm height (max), 0.50 mm pitch

Top View

View B

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	D1	E	E1	e	L	L1	L2	θ
Dimension (mm)	MIN	1.40*	0.05	1.35	0.17	11.80*	9.80*	11.80*	9.80*	$\begin{aligned} & 0.50 \\ & \text { BSC } \end{aligned}$	0.45	$\begin{aligned} & 1.00 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°
	NOM	-	-	1.40	0.22	12.00	10.00	12.00	10.00		0.60			$3.5{ }^{\circ}$
	MAX	1.60	0.15	1.45	0.27	12.20*	10.20*	12.20*	10.20*		0.75			7°

JEDEC Registration MS-026, Variation BCD, Issue D, Jan. 2001.

* This dimension is not specified in the JEDEC drawing.

Drawings not to scale.
Supertex Doc. \#: DSPD-64LQFPFG, Version C041309.
(The package drawings in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com.

