Philips Semiconductors Product specification

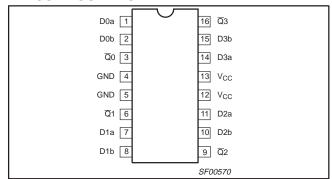
Quad 2-input NAND 30 Ω line driver (open collector)

74F3038

FEATURES

- 30Ω line driver
- 160mA output drive capability
- High speed
- Facilitates incident wave switching
- 3nh lead inductance each on V_{CC} and GND when both side pins are used

DESCRIPTION


The 74F3038 is a high current Open-Collector Line Driver composed of four 2-input NAND gates. It has been designed to deal with the transmission line effects of PC boards which appear when fast edge rates are used.

The 74F3038 can sink 160mA with a V_{CC} as low as 4.5V. This guarantees incident wave switching with V_{OL} not more than 0.8V while driving impedances as low as 30Ω . This is applicable with any combination of outputs using continuous duty.

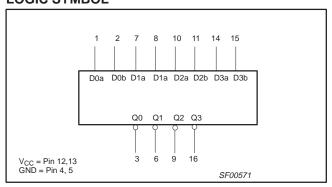
The AC specifications for the 74F3038 were determined using the standard FAST load for open-collector parts of 50pF capacitance, a 500 Ω pull-up resistor and a 500 Ω pull-down resistor. (See Test Circuit).

Reducing the load resistors to 100Ω will decrease the t_{PLH} propagation delay by approximately 50% while increasing t_{PHL} only slightly. The graph of typical propagation delay versus load resistor (see AC Characteristics section for Graph) shows a spline fit curve from four measured data points, $R_L=30\Omega,\ R_L=100\Omega,\ R_L=300\Omega,$ and $R_L=500\Omega.$

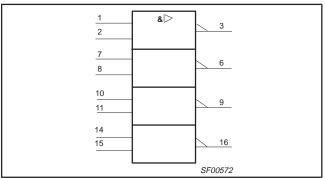
PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74F3038	6.0ns	17mA

ORDERING INFORMATION

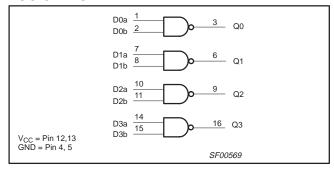

DESCRIPTION	COMMERCIAL RANGE V_{CC} = 5V $\pm 10\%$, T_{amb} = 0°C to +70°C	PACKAGE DRAWING NUMBER		
16-pin Plastic DIP	N74F3038N	SOT38-4		
16-pin Plastic SOL	N74F3038D	SOT162-1		

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE


PINS	PINS DESCRIPTION		LOAD VALUE HIGH/LOW		
Dna, Dnb	Data inputs	1.0/1.0	20μA/0.6mA		
Qn	Data outputs	OC/266	OC/160mA		

NOTE: One (1.0) FAST unit load is defined as: 20μA in the High state and 0.6mA in the Low state. OC = Open Collector.

LOGIC SYMBOL


IEC/IEEE SYMBOL

Quad 2-input NAND 30Ω line driver (open collector)

74F3038

LOGIC DIAGRAM

FUNCTION TABLE

INP	INPUTS					
Dna	Dnb	Qn				
L	L	Н				
L	Н	Н				
н	L	Н				
Н	Н	L				

H = High voltage level L = Low voltage level

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	−0.5 to +7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	V
I _{IN}	Input current	−30 to +5	mA
V _{OUT}	Voltage applied to output in High output state	−0.5 to V _{CC}	V
I _{OUT}	Current applied to output in Low output state	320	mA
T _{amb}	Operating free-air temperature range	0 to +70	°C
T _{stg}	Storage temperature range	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

CVMPOI	PARAMETER		UNIT		
SYMBOL	PARAMETER	MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	4.5	5.0	5.5	V
V _{IH}	High-level input voltage	2.0			V
V _{IL}	Low-level input voltage			0.8	V
I _{IK}	Input clamp current			-18	mA
V _{OH}	High-level output voltage			4.5	V
I _{OL}	Low-level output current			160	mA
T _{amb}	Operating free-air temperature range	0		+70	°C

Quad 2-input NAND 30Ω line driver (open collector)

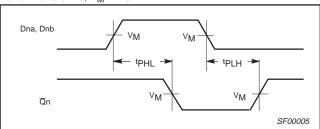
74F3038

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

OVMDOL	DADAMETER					l				
SYMBOL	PARAMETER		''	TEST CONDITIONS ¹				MAX	UNIT	
I _{OH}	High-level output current		$V_{CC} = MIN, V_{II}$	= MAX, V _{IH} = M	IN, V _{OH} = MAX			250	μΑ	
V	I am lama a montantana	$V_{CC} = MIN$	I _{OL} = 100mA	±10% V _{CC}		0.42	0.55	V		
V _{OL}	Low-level output current		$V_{IL} = MAX$ $V_{IH} = MIN$	$I_{OL} = 160 \text{mA}^3$	±5% V _{CC}			0.80	V	
V _{IK}	Input clamp voltage		$V_{CC} = MIN, I_I = I_{IK}$				-0.73	-1.2	V	
I _I	Input current at maximun voltage	n input	$V_{CC} = MAX, V_I = 7.0V$				100	μΑ		
I _{IH}	High-level input current		Vo	$CC = MAX, V_I = 2.$	7V			20	μΑ	
I _{IL}	Low-level input current		$V_{CC} = MAX, V_I = 0.5V$					-0.6	mA	
,	Supply current (total) I _{CCH} I _{CCL}		I _{CCH}		V _{IN} = GND		3.5	6.0	mA	
Icc			$V_{CC} = MAX$ $V_{IN} = 4.5V$				30	40	mA	

NOTES:

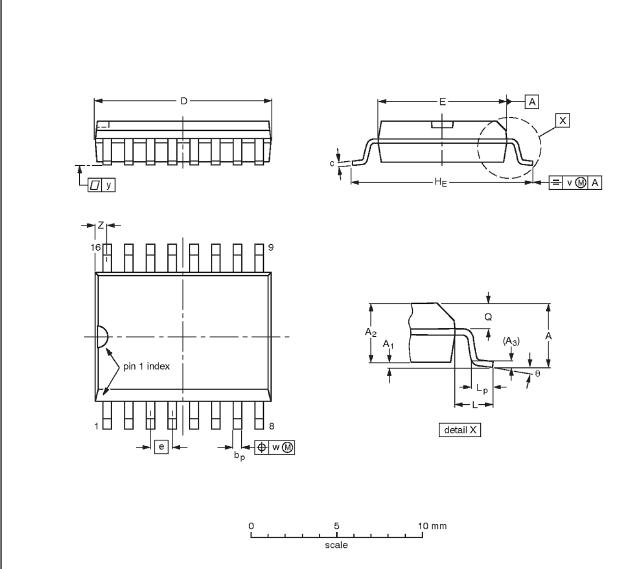

- 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
- 2. All typical values are at V_{CC} = 5V, T_{amb} = 25°C. 3. I_{OL1} is the current necessary to guarantee the High to Low transition in a 30Ω transmission line on the incident wave.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	$T_{amb} = +25^{\circ}\text{C}$ $V_{CC} = +5.0\text{V}$ $C_{L} = 50\text{pF}, R_{L} = 500\Omega$			T _{amb} = 0°C V _{CC} = +5. C _L = 50pF,	UNIT	
			MIN	TYP	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay Dna, Dnb to Qn	Waveform 1	6.0 1.0	8.5 2.0	11.5 5.0	6.0 1.0	12.0 5.0	ns

AC WAVEFORMS

For all waveforms, $V_M = 1.5V$.


Waveform 1. **Propagation Delay for Inputs to Output**

Quad 2-input NAND 30 Ω line driver (open collector)

74F3038

SO16: plastic small outline package; 16 leads; body width 7.5 mm

SOT162-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	ν	w	У	z ⁽¹⁾	θ
mm	2.65	0.30 0.10	2.45 2.25	0.25	0.49 0.36	0.32 0.23	10.5 10.1	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.10	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.41 0.40	0.30 0.29	0.050	0.419 0.394	0.055	0.043 0.016		0.01	0.01	0.004	0.035 0.016	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	
SOT162-1	075E03	MS-013AA				