

MCP6V06/7/8

300 µA, Auto-Zeroed Op Amps

Features

- · High DC Precision:
 - V_{OS} Drift: ±50 nV/°C (maximum)
 - V_{OS}: ±3 μV (maximum)
 - A_{OL}: 125 dB (minimum)
 - PSRR: 125 dB (minimum)
 - CMRR: 120 dB (minimum)
 - E_{ni} : 1.7 μ V_{P-P} (typical), f = 0.1 Hz to 10 Hz
 - E_{ni} : 0.54 µVp-p (typical), f = 0.01 Hz to 1 Hz
- · Low Power and Supply Voltages:
 - I_O: 300 μA/amplifier (typical)
 - Wide Supply Voltage Range: 1.8V to 5.5V
- · Easy to Use:
 - Rail-to-Rail Input/Output
 - Gain Bandwidth Product: 1.3 MHz (typical)
 - Unity Gain Stable
 - Available in Single and Dual
 - Single with Chip Select (CS): MCP6V08
- Extended Temperature Range: -40°C to +125°C

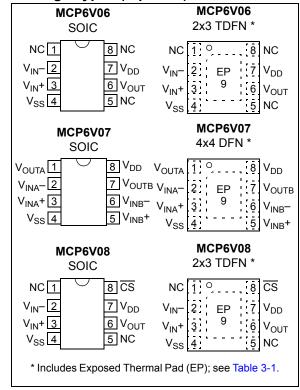
Typical Applications

- · Portable Instrumentation
- Sensor Conditioning
- · Temperature Measurement
- · DC Offset Correction
- · Medical Instrumentation

Design Aids

- · SPICE Macro Models
- FilterLab[®] Software
- Mindi™ Circuit Designer & Simulator
- · Microchip Advanced Part Selector (MAPS)
- · Analog Demonstration and Evaluation Boards
- · Application Notes

Related Parts


• MCP6V01/2/3: Spread clock, lower offset

Description

The Microchip Technology Inc. MCP6V06/7/8 family of operational amplifiers has input offset voltage correction for very low offset and offset drift. These devices have a wide gain bandwidth product (1.3 MHz, typical) and strongly reject switching noise. They are unity gain stable, have no 1/f noise, and have good PSRR and CMRR. These products operate with a single supply voltage as low as 1.8V, while drawing 300 µA/amplifier (typical) of quiescent current.

The Microchip Technology Inc. MCP6V06/7/8 op amps are offered in single (MCP6V06), single with Chip Select (CS) (MCP6V08), and dual (MCP6V07). They are designed in an advanced CMOS process.

Package Types (top view)

1.0 ELECTRICAL CHARACTERISTICS

1.1 Absolute Maximum Ratings †

V _{DD} - V _{SS}	6.5V
Current at Input Pins	±2 mA
Analog Inputs (V_{IN} + and V_{IN} -) †† V_{SS} -	- 1.0V to V _{DD} +1.0V
All other Inputs and Outputs V_{SS} -	- 0.3V to V _{DD} +0.3V
Difference Input voltage	V _{DD} - V _{SS}
Output Short Circuit Current	Continuous
Current at Output and Supply Pins	±30 mA
Storage Temperature	65°C to +150°C
Max. Junction Temperature	+150°C
ESD protection on all pins (HBM, MM)	≥ 4 kV, 300V

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

†† See Section 4.2.1 "Rail-to-Rail Inputs".

1.2 Specifications

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, T_A = +25°C, V_{DD} = +1.8V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/3$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 20 \text{ k}\Omega$ to V_L , and $\overline{CS} = \overline{GND}$ (refer to Figure 1-5 and Figure 1-6). **Parameters** Sym Min Typ Max Units Conditions Input Offset Input Offset Voltage -3 +3 μV $T_A = +25^{\circ}C$ (Note 1) Vos Input Offset Voltage Drift with Temperature -50 nV/°C $T_A = -40 \text{ to } +125^{\circ}\text{C}$ TC₁ +50 (Note 1) (linear Temp. Co.) $T_A = -40 \text{ to } +125^{\circ}\text{C}$ Input Offset Voltage Quadratic Temp. Co. TC_2 ±0.15 nV/°C2 Power Supply Rejection **PSRR** 125 142 (Note 1) Input Bias Current and Impedance Input Bias Current +6 Αq I_B $T_A = +85^{\circ}C$ Input Bias Current across Temperature +140 pΑ I_B +1500 +5000 $T_A = +125^{\circ}C$ I_B pΑ Input Offset Current los -85 pΑ -85 Input Offset Current across Temperature $T_A = +85^{\circ}C$ I_{OS} -1000 -190 1000 $T_A = +125^{\circ}C$ I_{OS} Common Mode Input Impedance 10¹³||6 Z_{CM} $\Omega || pF$ 10¹³||6 Differential Input Impedance Ω ||pF **Z**DIFF **Common Mode** Common-Mode Input Voltage Range V_{DD} + 0.20 $V_{SS} - 0.20$ (Note 2) V_{CMR} Common-Mode Rejection **CMRR** 120 136 dΒ $V_{DD} = 1.8V,$ $V_{CM} = -0.2V \text{ to } 2.0V$ (Note 1, Note 2) $V_{DD} = 5.5V,$ **CMRR** 130 147 dΒ $V_{CM} = -0.2V \text{ to } 5.7V$ (Note 1, Note 2) Open-Loop Gain DC Open-Loop Gain (large signal) 125 dB $V_{DD} = 1.8V,$ 147 A_{OL} V_{OUT} = 0.2V to 1.6V (Note 1) A_{OL} 135 158 dB $V_{DD} = 5.5V$, $V_{OUT} = 0.2V \text{ to } 5.3V \text{ (Note 1)}$

Note 1: Set by design and characterization. Due to thermal junction and other effects in the production environment, these parts can only be screened in production (except TC₁; see **Appendix B: "Offset Related Test Screens"**).

^{2:} Figure 2-18 shows how V_{CMR} changed across temperature for the first three production lots.

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, T_A = +25°C, V_{DD} = +1.8V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/3$, V_{OUT} = $V_{DD}/2$, V_L = $V_{DD}/2$, V_L = 20 k Ω to V_L , and \overline{CS} = GND (refer to Figure 1-5 and Figure 1-6). **Units Conditions Parameters** Sym Min Тур Max Output Maximum Output Voltage Swing V_{SS} + 15 G = +2, 0.5V input overdrive V_{DD} – 15 mV Vol, Voh **Output Short Circuit Current** ±7 mΑ $V_{DD} = 1.8V$ I_{SC} ±22 mΑ $V_{DD} = 5.5V$ I_{SC} **Power Supply** Supply Voltage ٧ V_{DD} 1.8 5.5 Quiescent Current per amplifier 200 300 400 $I_O = 0$ I_Q μΑ POR Trip Voltage V_{POR} 1.15 1.65

TABLE 1-2: AC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, $T_A = \pm 25^{\circ}C$, $V_{DD} = \pm 1.8V$ to $\pm 5.5V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/3$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, $V_L = V_{DD}/2$, $V_L = 0$ k Ω to V_L , $V_L = 0$ pF, and $\overline{CS} = 0$ GND (refer to Figure 1-5 and Figure 1-6).								
Parameters	Sym	Min	Тур	Max	Units	Conditions		
Amplifier AC Response								
Gain Bandwidth Product	GBWP	_	1.3	_	MHz			
Slew Rate	SR		0.5	_	V/µs			
Phase Margin	PM		65	_	٥	G = +1		
Amplifier Noise Response								
Input Noise Voltage	E _{ni}		0.54	_	μV_{P-P}	f = 0.01 Hz to 1 Hz		
	E _{ni}		1.7	_	μV_{P-P}	f = 0.1 Hz to 10 Hz		
Input Noise Voltage Density	e _{ni}	_	82	_	nV/√Hz	f < 2.5 kHz		
	e _{ni}		52	_	nV/√Hz	f = 100 kHz		
Input Noise Current Density	i _{ni}		0.6	_	fA/√Hz			
Amplifier Distortion (Note 1)								
Intermodulation Distortion (AC)	IMD		32	_	μV_{PK}	V_{CM} tone = 50 m V_{PK} at 1 kHz, G_N = 1, V_{DD} = 1.8 V		
	IMD		25	_	μV_{PK}	V_{CM} tone = 50 m V_{PK} at 1 kHz, G_N = 1, V_{DD} = 5.5 V		
Amplifier Step Response								
Start Up Time	t _{STR}		500	_	μs	V _{OS} within 50 μV of its final value		
Offset Correction Settling Time	t _{STL}	_	300	_	μs	G = +1, V_{IN} step of 2V, V_{OS} within 50 μ V of its final value		
Output Overdrive Recovery Time	t _{ODR}	_	100	_	μs	G = -100, \pm 0.5V input overdrive to $V_{DD}/2$, V_{IN} 50% point to V_{OUT} 90% point (Note 2)		

Note 1: These parameters were characterized using the circuit in Figure 1-7. Figure 2-37 and Figure 2-38 show both an IMD tone at DC and a residual tone at1 kHz; all other IMD and clock tones are spread by the randomization circuitry.

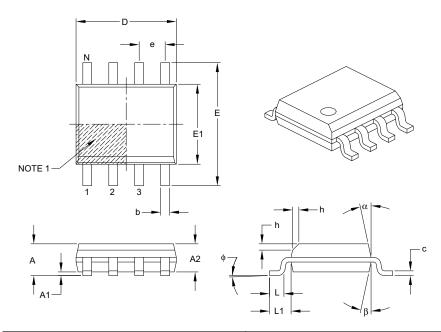
Note 1: Set by design and characterization. Due to thermal junction and other effects in the production environment, these parts can only be screened in production (except TC₁; see **Appendix B: "Offset Related Test Screens"**).

^{2:} Figure 2-18 shows how V_{CMR} changed across temperature for the first three production lots.

^{2:} t_{ODR} includes some uncertainty due to clock edge timing.

TABLE 1-3: DIGITAL ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +1.8V$ to $+5.5V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/3$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$										
Parameters	Sym	Min	Тур	Max	Units	Conditions				
CS Pull-Down Resistor (MCP6V08)										
CS Pull-Down Resistor	R _{PD}	3	5	_	MΩ					
CS Low Specifications (MCP6V08	CS Low Specifications (MCP6V08)									
CS Logic Threshold, Low	V_{IL}	V _{SS}	-	0.3V _{DD}	V					
CS Input Current, Low	I _{CSL}	_	5	_	pA	CS = V _{SS}				
CS High Specifications (MCP6V08	3)									
CS Logic Threshold, High	V_{IH}	$0.7V_{DD}$	_	V_{DD}	V					
CS Input Current, High	I _{CSH}	_	V_{DD}/R_{PD}	_	pA	CS = V _{DD}				
CS Input High, GND Current per	I _{SS}	_	-0.7	_	μA	CS = V _{DD} , V _{DD} = 1.8V				
amplifier	I _{SS}	_	-2.3	_	μA	$\overline{\text{CS}} = \text{V}_{\text{DD}}, \text{V}_{\text{DD}} = 5.5\text{V}$				
Amplifier Output Leakage, CS High	I _{O_LEAK}	_	20	_	pA	CS = V _{DD}				
CS Dynamic Specifications (MCP	6V08)									
CS Low to Amplifier Output On	t _{ON}	_	11	100	μs	CS Low = V _{SS} +0.3 V, G = +1 V/V,				
Turn-on Time						$V_{OUT} = 0.9 V_{DD}/2$				
CS High to Amplifier Output High-Z	t _{OFF}	_	10	_	μs	CS High = V _{DD} – 0.3 V, G = +1 V/V,				
						$V_{OUT} = 0.1 V_{DD}/2$				
Internal Hysteresis	V _{HYST}	_	0.25	_	V					

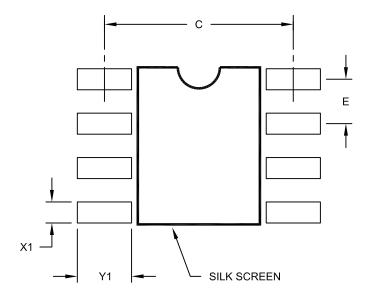

TABLE 1-4: TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, all limits are specified for: V _{DD} = +1.8V to +5.5V, V _{SS} = GND.								
Parameters	Sym	Min	Тур	Max	Units	Conditions		
Temperature Ranges								
Specified Temperature Range	T _A	-40	_	+125	°C			
Operating Temperature Range	T _A	-40	_	+125	°C	(Note 1)		
Storage Temperature Range	T _A	-65	_	+150	°C			
Thermal Package Resistances								
Thermal Resistance, 8L-2x3 TDFN	θ_{JA}	_	41	_	°C/W			
Thermal Resistance, 8L-4x4 DFN	θ_{JA}	_	44	_	°C/W	(Note 2)		
Thermal Resistance, 8L-SOIC	θ_{JA}	_	150	_	°C/W			

 $[\]textbf{Note} \quad \textbf{1:} \quad \text{Operation must not cause } T_J \text{ to exceed Maximum Junction Temperature specification (150°C)}.$

^{2:} Measured on a standard JC51-7, four layer printed circuit board with ground plane and vias.

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]


	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		8		
Pitch	е		1.27 BSC		
Overall Height	Α	_	_	1.75	
Molded Package Thickness	A2	1.25	_	_	
Standoff §	A1	0.10	_	0.25	
Overall Width	E	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	4.90 BSC			
Chamfer (optional)	h	0.25	_	0.50	
Foot Length	L	0.40	_	1.27	
Footprint	L1	1.04 REF			
Foot Angle	ф	0°	_	8°	
Lead Thickness	С	0.17	_	0.25	
Lead Width	b	0.31	_	0.51	
Mold Draft Angle Top	α	5°	_	15°	
Mold Draft Angle Bottom	β	5°	_	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-057B

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	Е	1.27 BSC			
Contact Pad Spacing	C		5.40		
Contact Pad Width (X8)	X1			0.60	
Contact Pad Length (X8)	Y1			1.55	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2057A

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>-X</u> /XXX	Exa	imples:	
	 perature Package ange	a) b)		Extended temperature, 8LD SOIC package. Extended temperature, 8LD 2x3 TDFN package.
Device:	MCP6V06 Single Op Amp MCP6V06T (Tape and Reel for 2x3 TDFN and SOIC) MCP6V07T Dual Op Amp (Tape and Reel for 4×4 DFN and SOIC) MCP6V08 Single Op Amp with Chip Select MCP6V08T (Tape and Reel for SOIC)	a)b)a)b)		Extended temperature, 8LD 4x4 DFN package Tape and Reel, Extended temperature, 8LD SOIC package. Extended temperature, 8LD SOIC package. Extended temperature, 8LD 2x3 TDFN package.
Temperature Range:	E = -40°C to +125°C			
Package:	MD = Plastic Dual Flat, No-Lead (4×4x0.9 mm), 8-lead (MCP6V07 only) MNY * = Plastic Dual Flat, No-Lead (2×3x0.75 mm), 8-lead (MCP6V06, MCP6V08) SN = Plastic SOIC (150mil Body), 8-lead * Y = nickel palladium gold manufacturing designator. Only available on the TDFN package.			