

Vishay Siliconix

P-Channel 1.8-V (G-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	R_{DS(on)} (Ω)	I _D (A)	Q _g (Typ.)		
	0.033 at V _{GS} = - 4.5 V	- 7.1			
- 8	0.043 at V _{GS} = - 2.5 V	- 6.2	14		
	0.060 at V _{GS} = - 1.8 V	- 5.3			

FEATURES

- Halogen-free According to IEC 61249-2-21
 Available
- TrenchFET[®] Power MOSFET

Ordering Information: Si5445BDC-T1-E3 (Lead (Pb)-free)

Si5445BDC-T1-GE3 (Lead (Pb)-free and Halogen-free)

s

P-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS $T_A = 25 \text{ °C}$, unless otherwise noted						
Parameter		Symbol	5 s	Steady State	Unit	
Drain-Source Voltage		V _{DS}	- 8		V	
Gate-Source Voltage		V _{GS}	± 8			
Continuous Drain Current (T 150 °C) ⁸	T _A = 25 °C	- I _D	- 7.1	- 5.2		
Continuous Drain Current $(T_J = 150^{\circ} \text{ C})^{\circ}$	T _A = 85 °C		- 5.2	- 3.7		
Pulsed Drain Current		I _{DM}	± 20		A	
Continuous Source Current ^a		۱ _S	- 2.1	- 1.1		
Mariana Devez Dissignational	T _A = 25 °C	P _D	2.5	1.3	10/	
Maximum Power Dissipation-	T _A = 85 °C		1.3	0.7	~~	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		*	
Soldering Recommendations (Peak Temperature) ^{b, c}			260			

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Maximum lunction to Amhienta	t ≤ 5 s	R _{thJA}	45	50	°C/W
Maximum Junction-to-Ambient*	Steady State		85	95	
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	17	20	

Notes:

a. Surface Mounted on 1" x 1" FR4 board.

b. See Reliability Manual for profile. The ChipFET is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

c. Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.

Vishay Siliconix

SPECIFICATIONS $T_J = 25 \text{ °C}$, unless otherwise noted								
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit		
Static								
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \mu A$			- 1.0	V		
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 V$, $V_{GS} = \pm 8 V$			± 100	nA		
Zara Cata Valtaga Drain Current	I _{DSS}	$V_{DS} = -8 V, V_{GS} = 0 V$			- 1			
Zero Gale Voltage Drain Current		V_{DS} = - 8 V, V_{GS} = 0 V, T_{J} = 85 °C			- 5	μΑ		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \leq$ - 5 V, V_{GS} = - 4.5 V	- 20			А		
	R _{DS(on)}	V_{GS} = - 4.5 V, I _D = - 5.2 A		0.027	0.033			
Drain-Source On-State Resistance ^a		V _{GS} = - 2.5 V, I _D = - 4.5 A	0.035 0		0.043	Ω		
		V _{GS} = - 1.8 V, I _D = - 1.7 A		0.050	0.060			
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 5 V, I _D = - 5.2 A		18		S		
Diode Forward Voltage ^a	V _{SD}	I _S = - 1.1 A, V _{GS} = 0 V		- 0.8	- 1.2	V		
Dynamic ^b								
Total Gate Charge	Qg			14	21	nC		
Gate-Source Charge	Q _{gs}	V_{DS} = - 4 V, V_{GS} = - 4.5 V, I_D = - 5.2 A		1.8				
Gate-Drain Charge	Q _{gd}			3.3				
Gate Resistance	Rg	f = 1 MHz		8		Ω		
Turn-On Delay Time	t _{d(on)}			12	20			
Rise Time	t _r	V_{DD} = - 4 V, R_L = 4 Ω		22	35			
Turn-Off Delay Time	t _{d(off)}	$\text{I}_{\text{D}}\cong$ - 1 A, V_{GEN} = - 4.5 V, R_{g} = 6 Ω		75	115	ns		
Fall Time	t _f			50	75			
Source-Drain Reverse Recovery Time	t _{rr}	I		75	115			
Reverse Recovery Charge	Q _{rr}	$r_{\rm F} = -1.1 \Lambda, {\rm di/dt} = -100 \Lambda/\mu {\rm s}$		40	60	nC		

Notes:

a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

