Reed Switch

selector guide

Reed Switches	Page
Standard \& Miniature 2 Switches Sub Miniature \& Tiny Switches 4 Changeover Switches 4 Reed Operating Coils 5 Standard \& Miniature coils Permanent Magnets for Reed Switch 6 Magnet Types Operating Distances 7 l	

Reed Switch Application Notes	
Contact Protection	$8-10$

FM02050

For all your sales enquiries call...

USA + 1 (619) 2585057
Specification subject to change without notice. ©2008 Cynergy3

Reed Switch
 Standard \& Miniafure Switches

- Controlled switching environment.
- Low contact resistance variants.
- High power
applications.
- High voltage.

A family of form ' A ' reed switches produced with Rhodium contact material, designed to range from moderate currents and voltages through to high voltage, high current switching.

			Standard size Normally Open						Miniature
			Standard	High Power			High Voltage		
Parameters		Type	DRA200G	DRA282G	DRA283	DRA500H	DTA500H	DTA810H	MRA560G
Contact form			A	A	A	A	A	A	A
Contact material			Rh	Rh	Rh	Rh	T	T	Rh
Switching capacity	max.	W/VA	80	120	250	25	50	50	100
Switching voltage	max.	VAC/DC	250	250	250	500	1000	7500	1000
Switching current	max.	A	1.3	*3.0	*5.0	1.5	2.5	3.0	1.0
Carrying current	max.	A	2.0	5.0	5.0	-	-	-	2.5
Dielectric strength	min.	VDC	800	800	575	2500	2500	10000	1500
Initial Contact resistance	max.	mOhms	80	80	100	100	100	100	100
Insulation resistance	min.	Ohms	10^{11}	10^{11}	10^{10}	10^{8}	10^{8}	10^{10}	10^{10}
Operate sensitivity	range	AT	$75 . . .95$	$75 . . .95$	$60 . . .120$	60 ... 100	$60 . .100$	100 ... 150	20... 40
Release sensitivity	min.	AT	25	33.5	-	16	25	46	5
Operate time including bounce	max.	ms	4.0	3.5	5.0	3.0	3.0	3.0	1.1
Bounce time	max.	ms	0.5	0.5	1.0	0.5	0.5	1.0	0.5
Release time	max.	ms	0.20	0.20	0.2	1.5	1.5	1.0	0.05
Resonant frequency	typ.	Hz	900	900	900	-	-	-	2500
Operating frequency	max.	Hz	100	100	-	-	-	-	500
Vibration	35 g	Hz	500	500	-	-	-	-	2000
Shock	11 ms	g	50	50	-	-	-	-	30
Capacitance	typ.	pF	0.8	0.8	0.6	0.8	1.5	1.0	0.5
Operating temperature range	${ }^{\circ} \mathrm{C}$			-40...+150			0/+125		-40...+150

Dimensions

Overall length	A max.	mm	79	79	84	82	82	82	56
Glass length	B max.	mm	52	52	51	51	51	54	21
Glass diameter	C max.	mm	5.4	5.4	5.4	5.5	5.5	55.5	2.8
Wire diameter	D nom.	mm	2.5×0.5	0.60					

* Reduced life at high current.
\dagger Plus Glass Pip 5.9 max.

Cynergy3 Components Ltd
7 Cobham Road
Ferndown Industrial Estate

Wimborne
Dorset BH21 7PE
Tel: $\quad+44$ (0) 1202897969
Fax: +44 (0) 1202891918
sales@cynergy3.com
www.cynergy3.com

Reed Switch

Sub Miniature \& Tiny Switches

FormA

These tiny reed switches are designed for low power and high speed switching with maximum sensitivity. Their extremely small size make them ideal for Dual In Line packages, or magnet operation.

Form A

- Small physical size.
- Centre or offset contact configurations.
- High speed switching.

Parameters		Type	Sub-Miniature Normally Open			Tiny Size Normally Open			Very Tiny
			SRA200G	SRA258	SRA260G	TRA211G	TRA291G	TRA294G	VDA200H
Contact form			A	A	A	A	*A	A	A
Contact material			Rh	Rh	Rh	Rh	Rh	Rh	Durel
Switching capacity	max.	W/VA	12	12	40	1	10	10	. 25
Switching voltage	max.	VAC/DC	230	230	230	24	100	150	30
Switching current	max.	A	1.0	1.0	2.0	0.1	0.3	. 5	0.01
Carrying current	max.	A	2.0	2.0	3.0	0.3	1.0	1.0	-
Dielectric strength	min.	VDC	400	400	400	150	200	250	150
Initial Contact resistance	max.	mohms	100	100	80	150	150	150	500
Insulation resistance	min.	ohms	10^{11}	10^{14}	10^{11}	10^{9}	10^{9}	1010	10^{9}
Operate sensitivity	range	AT	20... 50	20... 50	30... 50	10.30	10.40	15... 35	5... 20
Release sensitivity	min.	AT	5	5	15	5	5	5	3
Operate time including bounce	max.	ms	2.5	2.5	2.5	0.6	0.8	2.0	0.2
Bounce time	max.	ms	0.5	0.5	0.5	0.3	0.5	0.2	0.08
Release time	max.	ms	0.10	0.10	0.10	0.05	0.05	0.05	0.05
Resonant frequency	typ.	Hz	2,900	2,900	4,200	7,500	2750	5,000	-
Operating frequency	max.	Hz	200	200	300	500	500	200	-
Vibration	35 g	Hz	2,000	2,000	2,000	2,000		2,000	-
Shock	11 ms	g	50	50	50	30	30	50	-
Capacitance Operating temperature range	typ.	pF	0.5	0.5	0.5	0.2	0.3	0.7	0.2
	${ }^{\circ} \mathrm{C}$		-40...+150				-40...+125	-40...+150	-40...+125
Dimensions									
Total length	A max.	mm	55.0	55.0	55.0	36.0	44.5	55.0	26.7
Glass length	B max.	mm	19.0	19.0	19.0	10.0	13.0	14.1	5.4
Glass diameter	$C_{\text {max }}$	mm	2.6	2.6	2.6	2.0	2.3	2.3	1.4
Wire diameter	D nom.	mm	0.55	0.55	0.70	0.40	0.35x0.6	0.50	0.25

* Offset Contact Configuration

Cynergy3 Components Ltd 7 Cobham Road
Ferndown Industrial Estate Wimborne Dorset BH21 7PE
Tel: $\quad+44$ (0) 1202897969
Fax: +44 (0) 1202891918
sales@cynergy3.com
www.cynergy3.com

Reed Switch

Changeover Switches

- Changeover or normally closed application.
- Inert gas atmosphere.

A family of form 'C' reed switches offers moderate to medium voltage breakdown.

				Compact Change Over			Tiny Change Over	
				Standard	High Power			
	Parameters		Type	CRC200H	CRC500H	CTC500H	TRC200B	TRC200S
	Contact form			c	C	¢	C	c
	Contact material			Rh	Rh	I	Rh	Rh
	Swithing capacity	max.	W/NA	25	25	100\#	5	5
	Swithing voltage	max.	VAC/DC	150	250	500	175	175
	Swithing current	max.	A	1.0	1.0	3.0	0.25	0.25
	Carrying current	max.	A				0.5	0.5
	Dielectric strength	min.	VDC	250	1000	1000	200	200
	Initial contact resistance	max.	mohms	100	100	500	100	100
	Insulction resistance	min.	ohms	10^{10}	10^{8}	10^{8}	10^{9}	10^{9}
-	Operates sensitivity	range	${ }^{\text {at }}$	40... 80	50 ... 90	$60 . . .100$	$15 . . .30$	$15 . . .30$
-	Release sensitivity	min.	at	10	30	32	.	.
1	Operate time without bounce	max.	ms	3.0	3.0	3.5	0.7	0.7
	Bounce time	max.	ms	1.0	1.0	1.5	-	.
	Release time	max.	ms	2.0	1.0	1.0	1.0	1.0
	Resonnant frequency	typ.	Hz	.	.	.	11000	11000
	Operating frequency	max.	Hz
	Vibration	35 g	Hz	.	.		$30 \mathrm{@} 50-2 \mathrm{~Hz}$	$30 \mathrm{@} 50-2 \mathrm{~Hz}$
	Shock	11 ms	g	-	.	-	50	50
	Capacitance	typ.	pF	2.0	2.0	.		
	Operating temperature range	${ }^{\circ} \mathrm{C}$		$-40 . . .+150$				
	Dimensions							
	Overall length	A max.	mm	87	87	87	53	53
	Glass length	B max.	mm	35	35	35	14.8	14.8
	Glass diameter	Cmax.	mm	5.4	5.4	5.4	2.7	2.7
	Wire diameter	D max.	mm	1.0	1.0	1.0	0.51	0.51

Compact Change Over

Tiny Change Over

Cynergy3 Components Ltd
7 Cobham Road
Ferndown Industrial Estate
Wimborne
Dorset BH21 7PE
Tel: $\quad+44(0) 1202897969$
Fax: +44 (0) 1202891918
sales@cynergy3.com
www.cynergy3.com

Reed Operating Coils

Operating coils for Standard and Miniature size reed switches are available for customer assembly of Reed Relays. Coils are made in two widths to take wither one or two reed switches.
Crydom Magnetics specialise in producing custom designs, so other variations and options may be available to suit particular requirements.
Details of Crydom Magnetics Reed Switches are listed on separate sheets, available on request.

Miniature

Standard

Coil Type MVoltage	Coil Resistance	Footprint View from	
MS05	5 Vdc	1550 hms	
MS12	12 Vdc	9300 hms	
MS24	24 Vdc	3500 hms	
MD05	5 Vdc	780 hms	\square
MD12	12 Vdc	4350 hms	\square

Coil size	No. of reeds	W	H	Rx Sensitivity
MS	1	12.7	14.6	$30-40$
MD	2	18.3	16.4	$30-40$

Coil size	No. of reeds	W	H	Rx Sensitivity
SS	1	12.7	15.2	$50-60$
SD	2	18.3	16.4	$50-60$

Cynergy3 Components Ltd 7 Cobham Road
Ferndown Industrial Estate Wimborne
Dorset BH21 7PE
Tel: $\quad+44$ (0) 1202897969
Fax: +44 (0) 1202891918
sales@cynergy3.com
www.cynergy3.com

Permanent Magnets for Reed Switch Operation

A range of magnets is available for operating the Crydom Magnetics range of reed switches. The selection of the correct combination of magnets and reeds switches, for a particular application, will normally be made on an empirical basis as intricate calculations are not necessary.

The following table of magnet types and accompanying graphs act as a guide to the relationship between switch sensitivity and magnet type. These figures can only be taken as a rough indication, due to the fact that magnets are manufactured to commercial tolerances.

Details of Crydom Magnetics Reed Switches are listed on separate sheets, available on request.
Magnet Types

Type Number	Nominal Dimensions mm/ins						Total Magnetic Flux
	Length 'A'		Length 'B'		Length 'C'		
	mm	inches	mm	inches	mm	inches	$\mu \mathrm{Wb}$
RSHOI	12.7	0.5	3.2	0.125	1.6	0.063	4.0
RSH02	31.7	1.25	6.4	0.25	6.4	0.25	28
RSH32	27.9	1.10	4.8	0.187	4.8	0.187	22
RSH33	19.1	0.75	3.2	0.125	3.2	0.125	9
RSH34	25.4	1.00	6.4	0.25	6.4	0.25	30
RSH73	12.7	0.5		0.125			5.5
RSH74	52.9	2.08	10.2	0.40			71

All of these magnets are polarised along their length.

Actuation of Reed Switches with a

Direct Actuation:
A magnet moved perpendicularly towards and away from a Reed Switch turnsiton and off once.

A magnet moved parallel to a Reed
Switch operates if from one to three
times.

A magnet swung towards and away from a Reed Switch operates it once.

Rotation:
Examples of swithhing through rotational movement:

Indirect Actuation: Shielding
With the stationary arrangement of a Reed Switch and magnet, the reed contacts are closed. Should the magnetic field be diverted away from the Reed Switch by a shield of ferro-magnetic material placed between the switch and the magnet, the contacts will open. When the shield is removed, the reed contacts become magnetically actuated and close.

A ring magnet moved parallel to the Reed Switch axis operates it from one to three times.

.

Cynergy3 Components Ltd 7 Cobham Road
Ferndown Industrial Estate Wimborne
Dorset BH21 7PE
Tel: $\quad+44$ (0) 1202897969
Fax: +44 (0) 1202891918
sales@cynergy3.com
www.cynergy3.com

Operating graphs

for Direct Actuation

NB Magnet parallel to reed switch and moving in perpendicular direction. Distance is between outside of reed switch and face of magnet.

Cynergy3 Components Ltd 7 Cobham Road Ferndown Industrial Estate Wimborne
Dorset BH21 7PE
Tel: $\quad+44$ (0) 1202897969
Fax: +44 (0) 1202891918
sales@cynergy3.com
www.cynergy3.com

Reed Switch

Cynergy3 Components Ltd 7 Cobham Road Ferndown Industrial Estate Wimborne Dorset BH21 7PE
Tel: $\quad+44$ (0) 1202897969
Fax: +44 (0) 1202891918 sales@cynergy3.com www.cynergy3.com

The upper nomograph can be used for determining contact arc suppression for inductive loads.
Example 1: $\begin{aligned} I & =0,1 \mathrm{~A} \\ \mathrm{~V} & =230 \mathrm{~V}\end{aligned}$
$C=0,001$ microfarads
$R=340$ ohms
Example 2:
If the current inrush is critical use the lower nomograph to determine the minimum resistance.
$=0,5 \mathrm{~A}$
Rmin $=400$ ohms

1000
800

400

200

100
-80

Reed Switch

Application Notes

Capacitive Loads
Unlike inductive loads, capacitive and lamp loads are prone to high inrush currents which can lead to faulty operation and even contact welding. When switching charged capacitors (including cable capacitance) a sudden unloading can occur, the intensity of which is determined by the capacity and length of the connecting leads to the switch. This inrush peak can be reduced by a series of resistors. The value of these resistors is dependent on the particular application but should be as high as possible to ensure that the inrush current is within the allowable limits.

The diagram illustrates a resistor/capacitor network for protecting a Reed Switch against high inrush currents. R1 and/or R2 are used depending upon circuit conditions.

With lamp load applications it is important to note that cold lamp filaments have a resistance 10 times smaller than already glowing filaments. This means that when being turned-on, the lamp filament experiences a current flow 10 times greater than when already hot. This high inrush current can be reduced to an acceptable level through the use of a series of currentlimiting resistors. Another possibility is to fit a resistor across the switch. This allows just enough current to flow through the filament to keep it warm, yet not enough to make it glow.

Lamp load with parallel or current limiting resistor across the switch

Cutting and Bending

As the Reed Switch blades form part of a magnetic circuit, shortening the leads results in increased pull-in and drop-out values.

When cutting or bending Reed Switches, it is important that the glass body is not damaged. Therefore, the cutting or bending point should be no closer than 3 mm to the glass body and the leads should be supported when cutting or bending as shown.

Actuation of Reed Switches with a Permanent Magnet Examples of swithing with the use of a moving magnet

Direct Actuation:
A magnet moved perpendicularly towards and away from a Reed Switch turns it on and off once.

A magnet moved parallel to a Reed Switch operates it from one to three times.

A magnet swung towards and away from a Reed Switch operates it once.

A ring magnet moved parallel to the Reed Switches axis operates it from one to three times.

Rotation:
Examples of switching through rotational movement:

Indirect Actuation: Shielding
With the stationary arrangement of a Reed Switch and magnet, the reed contacts are closed. Should the magnetic field be diverted away from the Reed Switch by a shield of ferro-magnetic material placed between the switch and the magnet, the contacts will open. When the shield is removed, the reed contacts become magnetically actuated and close.

Permanent Magnet areas of Operation

Magnets

The materials used for Reed Switch magnets are generally ALNICO (an aluminium nickel cobalt alloy), ceramic (barium ferrite or another metal oxide) or rare earth magnets. Due to their specific magnetic characteristics, the types of magnets differ in shape: ALNICO magnets are bar magnets with a length/diameter ratio of $3 / 1$ to $5 / 1$; oxide magnets are generally disc or moulded magnets. Also important to note is the difference in temperature coefficient:
ALCO: $0.02 \% / K$, oxide: $0.2 \% / K$

In General:

The sensitivity of a reed switch is a measurement of the magnetic energy required to operate the switch. The unit of measurement is Ampere-Turns(AT), which is the current in a given coil multiplied the number of furns on that coil.

Manufacturers of reed swithes will set their machines such that they aim to produce a particular operate AT but, due to tolerances in materials, machinery and operator control, the switches produced will have a range of operate AT. The reed switches are then measured and sorted into bands of AT, and stocked in those bands.

For each Reed Switch type the available range of operate sensitivity is given in the data table.
Other operate sensitivities are available on request.

Life Expectancy:

The life expectancy of a Reed Swith is about 10^{5}... 10^{6} switching cycles with maximum power. With a low load the life expectancy can reach 5×10^{8} operations. The mechanical life expectancy can reach at least 10^{9} operations. The Life Expectancy is considerably reduced, through the switching of Inductive, Capacitive and Lamp loads, due to the maximum current being exceeded.

Pull In Sensitivity Tolerance:
The given operate sensitivity of the Reed Switch has a test equipment tolerance of ± 2 AT.

Part Number system

Example:

DRA282G $=$ Standard size - Rhodium contact - N/0 - Non-pressurised - High Power Contact - Operate Sensitivity 60 - 70 AT.

Downloaded from Elcodis.com electronic components distributor

Downloaded from Elcodis.com electronic components distributor

