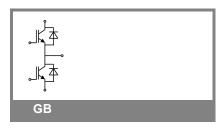
SK25GB065

IGBT Module

SK25GB065


Preliminary Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63 532

Typical Applications

- Switching (not for linear use)
- Driver
- Switched mode power supplies
- UPS
- High switching applications (typ.>=15kHz)

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT	•		'			
V_{CES}	T _j = 25 °C		600	V		
I _C	T _j = 125 °C	T _s = 25 °C	30	A		
		$T_s = 80 ^{\circ}C$	21	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		60	А		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C	10	μs		
Inverse D	Diode					
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$	36	Α		
		T_s = 80 °C	24	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		70	А		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	200	Α		
Module						
$I_{t(RMS)}$				Α		
T _{vj}			-40 + 150	°C		
T _{stg}			-40 +125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics $T_s =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.7 \text{ mA}$		3	4	5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,1	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			120	nA
		T _j = 125 °C				nA
V_{CE0}		T _j = 25 °C		1,2	1,3	V
		T _j = 125 °C		1,1	0,9	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		20	23	mΩ
		T _j = 125°C		33	43	mΩ
V _{CE(sat)}	I _{Cnom} = 30 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,8	2	V
		$T_j = 125^{\circ}C_{chiplev.}$		2,1	2,2	V
C _{ies}				1,6		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,15		nF
C _{res}				0,092		nF
t _{d(on)}				30		ns
t _r	$R_{Gon} = 33 \Omega$	V _{CC} = 300V		35		ns
E _{on}		I _C = 25A		0,75		mJ
$t_{d(off)}$	$R_{Goff} = 33 \Omega$	T _j = 125 °C		250		ns
t _f		V _{GE} =±15V		15		ns
E_{off}				0,6		mJ
$R_{\text{th(j-s)}}$	per IGBT				1,4	K/W

SK25GB065

SEMITOP® 1

IGBT Module

SK25GB065

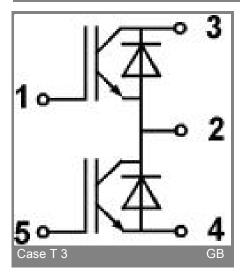
Preliminary Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63 532


Typical Applications


- Switching (not for linear use)
- Driver
- Switched mode power supplies
- UPS
- High switching applications (typ.>=15kHz)


Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	I_{Fnom} = 25 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,45	1,7	V	
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,4	1,75	V	
V_{F0}		T _j = 125 °C		0,85	0,9	V	
r _F		T _j = 125 °C		22	32	mΩ	
I _{RRM}	I _F = 25 A	T _i = 125 °C		16		Α	
Q_{rr}	di/dt = -500 A/µs	,		2		μC	
E _{rr}	V _{CC} = 300V			0,25		mJ	
$R_{th(j-s)D}$	per diode				1,7	K/W	
M _s	to heat sink			•	1,5	Nm	
w				13		g	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

