VLMK310.

Vishay Semiconductors

Standard SMD LED PLCC-2

DESCRIPTION

This device has been designed to meet the increasing demand for AllnGaP technology.

The package of the VLMK310. is the PLCC-2 (equivalent to a size B tantalum capacitor).

It consists of a lead frame which is embedded in a white thermoplast. The reflector inside this package is filled up with clear epoxy.

PRODUCT GROUP AND PACKAGE DATA

Product group: LED

DADTO TADU

- Package: SMD PLCC-2
- Product series: standard
- Angle of half intensity: ± 60°

FEATURES

- SMD LED with exceptional brightness
- Luminous intensity categorized
- Compatible with automatic placement
 equipment
- EIA and ICE standard package
- Compatible with IR reflow, vapor phase and wave solder processes according to CECC 00802 and J-STD-020B
- Available in 8 mm tape
- Low profile package
- Non-diffused lens: excellent for coupling to light pipes and backlighting
- Low power consumption
- Luminous intensity ratio in one packaging unit $I_{Vmax}/I_{Vmin} \leq 1.6$
- · Lead (Pb)-free device
- Preconditioning acc. to JEDEC level 2a
- ESD-withstand voltage: up to 2 kV according to JESD22-A114-B
- Automotive qualified AEC-Q101

APPLICATIONS

- Automotive: backlighting in dashboards and switches
- Telecommunication: indicator and backlighting in telephone and fax
- Indicator and backlight for audio and video equipment
- · Indicator and backlight in office equipment
- Flat backlight for LCDs, switches and symbols
- General use

COLOR, LUMINOUS INTENSITY	TECHNOLOGY
Red, I _V > 11.2 mcd	AllnGaP on GaAs
Red, I _V > 11.2 mcd	AllnGaP on GaAs
Red, I _V = (22.4 to 56) mcd	AllnGaP on GaAs
Red, I _V = (22.4 to 56) mcd	AllnGaP on GaAs
Red, I _V = (35.5 to 90) mcd	AllnGaP on GaAs
Red, I _V = (35.5 to 90) mcd	AllnGaP on GaAs
	Red, $I_V > 11.2 \text{ mcd}$ Red, $I_V > 11.2 \text{ mcd}$ Red, $I_V = (22.4 \text{ to 56}) \text{ mcd}$ Red, $I_V = (22.4 \text{ to 56}) \text{ mcd}$ Red, $I_V = (22.4 \text{ to 56}) \text{ mcd}$ Red, $I_V = (35.5 \text{ to 90}) \text{ mcd}$

VLMK310.

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS ¹⁾ VLMK310.				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Reverse voltage 2)		V _R	5	V
DC Forward current	$T_{amb} \le 85 \ ^{\circ}C$	١ _F	30	mA
Surge forward current	$t_p \le 10 \ \mu s$	I _{FSM}	0.1	А
Power dissipation		P _V	80	mW
Junction temperature		Тj	125	°C
Operating temperature range		T _{amb}	- 40 to + 100	°C
Storage temperature range		T _{stg}	- 40 to + 100	°C
Thermal resistance junction/ ambient	mounted on PC board (pad size > 16 mm ²)	R _{thJA}	400	K/W

Note:

⁽¹⁾ $T_{amb} = 25$ °C, unless otherwise specified ⁽²⁾ Driving LED in reverse direction is suitable for short term application

OPTICAL AND ELECTRICAL CHARACTERISTICS ¹⁾ VLMK310., RED							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
		VLMK3100	Ι _V	11.2	50		mcd
Luminous intensity ²⁾	I _F = 10 mA	VLMK3102	Ι _V	22.4		56	mcd
		VLMK3105	Ι _V	35.5		90	mcd
Dominant wavelength	I _F = 10 mA		λ_d		630		nm
Peak wavelength	I _F = 10 mA		λ _p		643		nm
Angle of half intensity	I _F = 10 mA		φ		± 60		deg
Forward voltage	I _F = 20 mA		V _F		1.9	2.6	V
Reverse voltage	I _R = 10 μA		V _R	5			V
Junction capacitance	V _R = 0, f = 1 MHz		Cj		15		pF

Note:

¹⁾ $T_{amb} = 25 \,^{\circ}C$, unless otherwise specified

²⁾ In one packing unit $I_{Vmax}/I_{Vmin} \le 2.0$

LUMINOUS INTENSITY CLASSIFICATION				
GROUP	LIGHT INTENSITY (mcd)			
STANDARD	OPTIONAL	MIN.	MAX.	
L	1	11.2	14.0	
	2	14.0	18.0	
М	1	18.0	22.4	
	2	22.4	28.0	
N	1	28.0	35.5	
IN	2	35.5	45.0	
Р	1	45.0	56.0	
	2	56.0	71.0	
Q	1	71.0	90.0	
	2	90.0	112.0	
R	1	112.0	140.0	
	2	140.0	180.0	

Note:

Luminous intensity is tested at a current pulse duration of 25 ms and an accuracy of ± 11 %.

The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each reel (there will be no mixing of two groups on each reel).

In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on any one reel.

In order to ensure availability, single wavelength groups will not be orderable.

CROSSING TABLE		
VISHAY	OSRAM	
VLMK3100	LST676	
VLMK3102	LST676	
VLMK3105	LST676	

VLMK310.

Vishay Semiconductors

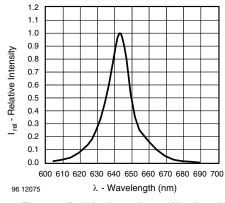


Figure 7. Relative Intensity vs. Wavelength

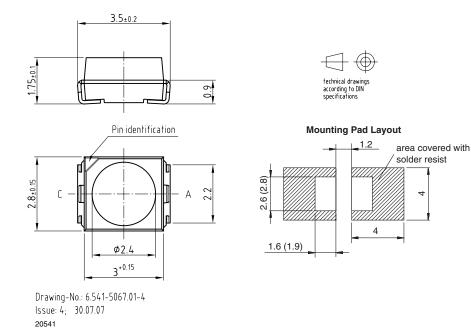



Figure 8. Forward Voltage vs. Ambient Temperature

PACKAGE DIMENSIONS in millimeters

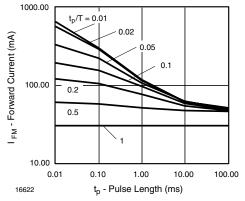


Figure 9. Permissible Forward Current vs. Pulse Length