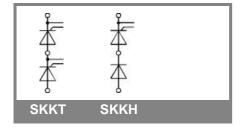
SKKT 122, SKKH 122

SEMIPACK[®] 2

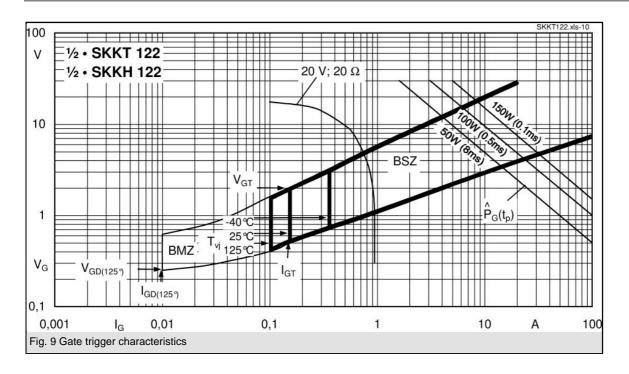
Thyristor / Diode Modules

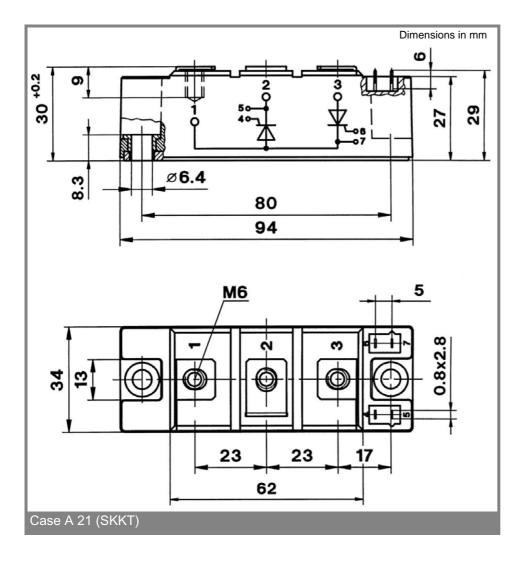
SKKT 122 SKKH 122

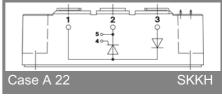
Features


- Heat transfer through aluminium oxide ceramic isolated metal baseplate
- Hard soldered joints for high reliability
- UL recognized, file no. E 63 532

Typical Applications


- DC motor control (e. g. for machine tools)
- Softstarter
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions


V _{RSM}	V _{RRM} , V _{DRM}	I _{TRMS} = 195 A (maximum value for continuous operation)		
V	V	I _{TAV} = 122 A (sin. 180; T _c = 88 °C)		
900	800	SKKT 122/08E	SKKH 122/08E	
1300	1200	SKKT 122/12E	SKKH 122/12E	
1500	1400	SKKT 122/14E	SKKH 122/14E	
1700	1600	SKKT 122/16E	SKKH 122/16E	
1900	1800	SKKT 122/18E	SKKH 122/18E	


Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 85 (100) °C	129 (92)	Α
I_D	P3/180; T _a = 45 °C; B2 / B6	82 / 105	Α
	P3/180F; T _a = 35 °C; B2 / B6	170 /200	Α
I_{RMS}	P3/180F; T _a = 35 °C; W1 / W3	235 / 3 * 160	Α
I _{TSM}	T _{vj} = 25 °C; 10 ms	3600	А
	T _{vj} = 125 °C; 10 ms	3200	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	64800	A²s
	T _{vj} = 125 °C; 8,3 10 ms	51200	A²s
V _T	$T_{vj} = 25 ^{\circ}\text{C}; I_{T} = 360 \text{A}$	max. 1,55	V
$V_{T(TO)}$	T _{vj} = 125 °C	max. 0,85	V
r _T	T _{vj} = 125 °C	max. 2	mΩ
I_{DD} ; I_{RD}	$T_{vj} = 125 \text{ °C}; V_{RD} = V_{RRM}; V_{DD} = V_{DRM}$	max. 40	mA
t _{gd}	$T_{vj} = 25 \text{ °C; } I_G = 1 \text{ A; } di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t_{gr}	$V_{\rm D} = 0.67 * V_{\rm DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 200	A/µs
(dv/dt) _{cr}	T _{vj} = 125 °C	max. 1000	V/µs
t_q	T _{vi} = 125 °C	120	μs
I _H	T_{vj} = 25 °C; typ. / max.	100 / 300	mA
I_{L}	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	200 / 500	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 2	V
I_{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T_{vj} = 125 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.; per thyristor / per module	0,2 / 0,1	K/W
R _{th(j-c)}	sin. 180; per thyristor / per module	0,21 / 0,105	K/W
$R_{th(j-c)}$	rec.120; per thyristor / per module	0,22 / 0,11	K/W
$R_{th(c-s)}$	per thyristor / per module	0,13 / 0,065	K/W
T_{vj}		- 40 + 125	°C
T_{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M_s	to heatsink	5 ± 15 % ¹⁾	Nm
M_t	to terminal	5 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	165	g
Case	SKKT	A 21	
	SKKH	A 22	

SKKT 122, SKKH 122

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.