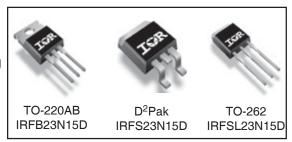
PD - 95535

SMPS MOSFET

IRFB23N15DPbF IRFS23N15DPbF IRFSL23N15DPbF

HEXFET® Power MOSFET


Applications

- High frequency DC-DC converters
- Lead-Free

Benefits

- Low Gate-to-Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

V _{DSS}	R _{DS(on)} max	I _D
150V	0.090Ω	23A

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	23	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	17	A
I _{DM}	Pulsed Drain Current ①	92	
P _D @T _A = 25°C	Power Dissipation ⑦	3.8	W
P _D @T _C = 25°C	Power Dissipation	136	
	Linear Derating Factor	0.9	W/°C
V _{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt ③	4.1	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torqe, 6-32 or M3 screw®	10 lbf•in (1.1N•m)	

Typical SMPS Topologies

• Telecom 48V input DC-DC Active Clamp Reset Forward Converter

Notes 1 through 2 are on page 11

IRFB/IRFS/IRFSL23N15DPbF

International

TOR Rectifier

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	150			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.18	_	- V/°	C Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.090	Ω	V _{GS} = 10V, I _D = 14A ④
V _{GS(th)}	Gate Threshold Voltage	3.0		5.5	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 150V, V_{GS} = 0V$
l ibss				250	4	$V_{DS} = 120V, V_{GS} = 0V, T_{J} = 150$ °C
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 30V
IGSS	Gate-to-Source Reverse Leakage			-100	''^	$V_{GS} = -30V$

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
g _{fs}	Forward Transconductance	11			S	$V_{DS} = 25V, I_{D} = 14A$
Qg	Total Gate Charge		37	56		I _D = 14A
Q _{gs}	Gate-to-Source Charge		9.6	14	nC	$V_{DS} = 120V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		19	29	Ī	V _{GS} = 10V, ⊕
t _{d(on)}	Turn-On Delay Time		10			$V_{DD} = 75V$
t _r	Rise Time		32		ns l	$I_D = 14A$
t _{d(off)}	Turn-Off Delay Time		18			$R_G = 5.1\Omega$
t _f	Fall Time		8.4]	V _{GS} = 10V ④
C _{iss}	Input Capacitance		1200			$V_{GS} = 0V$
Coss	Output Capacitance		260]	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		65		pF	f = 1.0MHz
Coss	Output Capacitance		1520			$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance	 	120			$V_{GS} = 0V$, $V_{DS} = 120V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance		210]	V _{GS} = 0V, V _{DS} = 0V to 120V ⑤

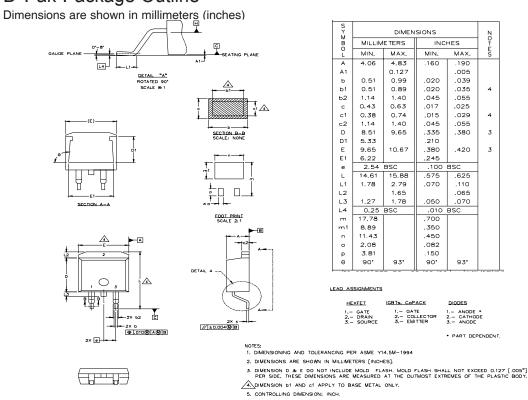
Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		260	mJ
I _{AR}	Avalanche Current①		14	Α
E _{AR}	Repetitive Avalanche Energy①		13.6	mJ

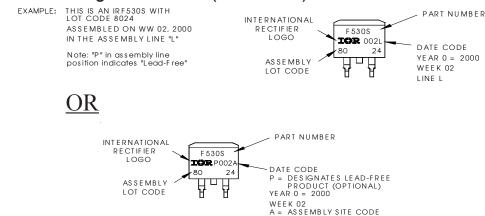
Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{eJC}	Junction-to-Case		1.1	
R _{0CS}	Case-to-Sink, Flat, Greased Surface ©	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient©		62	
$R_{\theta JA}$	Junction-to-Ambient⑦		40	

Diode Characteristics

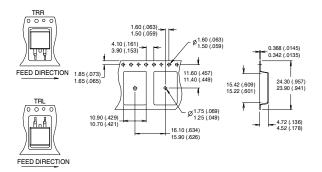

	Parameter	Min.	Тур.	Max.	Units	Conditions			
Is	Continuous Source Current			23	A	MOSFET symbol			
	(Body Diode)					showing the			
I _{SM}	Pulsed Source Current					02	_ 92		integral reverse
	(Body Diode) ①			32		p-n junction diode.			
V_{SD}	Diode Forward Voltage			1.3	٧	$T_J = 25$ °C, $I_S = 14A$, $V_{GS} = 0V$ ④			
t _{rr}	Reverse Recovery Time		150	220	ns	$T_J = 25^{\circ}C, I_F = 14A$			
Q _{rr}	Reverse RecoveryCharge	T	0.8	1.2	μC	di/dt = 100A/µs ⊕			
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)							

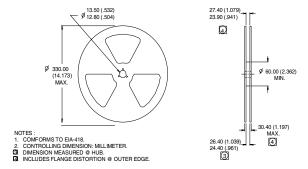
2


International TOR Rectifier

IRFB/IRFS/IRFSL23N15DPbF

D²Pak Package Outline


D²Pak Part Marking Information (Lead-Free)



International TOR Rectifier

IRFB/IRFS/IRFSL23N15DPbF

D²Pak Tape & Reel Infomation

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- $\begin{tabular}{ll} \hline @ Starting $T_J = 25^\circ C$, $L = 2.7mH$ \\ $R_G = 25\Omega, I_{AS} = 14A. \end{tabular}$
- ③ $I_{SD} \le 14A$, $di/dt \le 240A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_{c} < 175$ °C
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- $\ ^{\circ}$ C $_{oss}$ eff. is a fixed capacitance that gives the same charging time as C $_{oss}$ while V $_{DS}$ is rising from 0 to 80% V $_{DSS}$
- 6 This is only applied to TO-220AB package
- This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material).
 For recommended footprint and soldering techniques refer to application note #AN-994.

Data and specifications subject to change without notice.

International
Rectifier