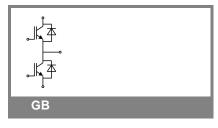
SK80GB063

IGBT Module

SK80GB063


Preliminary Data

Features

- · Compact design
- · One screw mounting
- · Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- · High short circuit capability
- . Low tail current with low temperature dependence
- Integrated PTC temperature sensor

Typical Applications

- Switching (not for linear use)Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT	•		_	•		
V_{CES}	T _j = 25 °C		600	V		
I _C	T _j = 125 °C	T _s = 25 °C	81	Α		
		$T_s = 80 ^{\circ}C$	57	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		200	Α		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C	10	μs		
Inverse D	Diode					
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$	79	Α		
		T_s = 80 °C	53	Α		
I_{FRM}	I _{FRM} = 2 x I _{Fnom}		150	Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	720	Α		
Module			<u>.</u>			
I _{t(RMS)}				Α		
T _{vj}			-40 + 150	°C		
T _{stg}			-40 +125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _s =		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.5 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,3	mA
		T _j = 125 °C				mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 30 \text{ V}$	T _j = 25 °C			300	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		1		V
		T _j = 125 °C		1,1		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		11		mΩ
		$T_j = 125^{\circ}C$		9		mΩ
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V			2,1	2,5	V
		$T_j = 125^{\circ}C_{chiplev.}$		2	2,3	V
C _{ies}				4,3		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz				nF
C _{res}				0,4		nF
Q_G	V _{GE} = 0 20 V			310		nC
t _{d(on)}				50		ns
Ţ,	R_{Gon} = 10 Ω	V _{CC} = 300V		40		ns
Ė _{on}	$R_{Goff} = 10 \Omega$	I _C = 100A T _i = 125 °C		4 300		mJ ns
$t_{d(off)} \ t_{f}$	Goff - 10 52	V _{GE} =±15V		35		ns
E _{off}		GE		3		mJ
R _{th(j-s)}	per IGBT	1			0,6	K/W

SK80GB063

IGBT Module

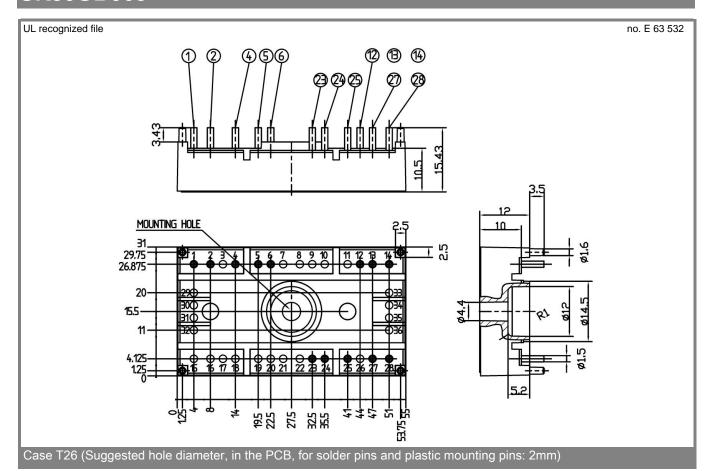
SK80GB063

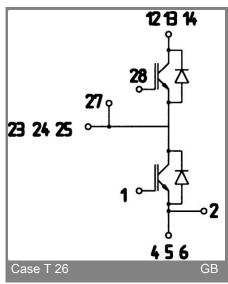
Preliminary Data

Features

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- · High short circuit capability
- Low tail current with low temperature dependence
- Integrated PTC temperature sensor

Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	I_{Fnom} = 60 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,4		V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,3		V		
V_{F0}		T _j = 125 °C		0,85	0,9	V		
r _F		T _j = 125 °C		6,5	11	mΩ		
I _{RRM}	I _F = 60 A	T _j = 125 °C		90		Α		
Q_{rr}	di/dt = -3000 A/μs			7		μC		
E _{rr}	V _{CC} = 300V			1,2		mJ		
$R_{th(j-s)D}$	per diode				0,9	K/W		
M_s	to heat sink M1		2,25		2,5	Nm		
w				30		g		

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

