

IGBT Modules

SKM 400GB123D

Features

- MOS input (voltage controlled)
- N channel, homgeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- · Fast & soft CAL diodes
- Isolated copper baseplate using DBC Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

Typical Applications

- AC inverter drives
- UPS

Absolute Maximum Ratings $T_c = 25 ^{\circ}\text{C}$, unless otherwise specifie				
Symbol	Conditions		Values	Units
IGBT				•
V_{CES}	T _j = 25 °C		1200	V
I _C	T _j = 150 °C	T _{case} = 25 °C	400	А
		T _{case} = 80 °C	330	Α
I _{CRM}	I _{CRM} =2xI _{Cnom}		600	Α
V_{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs
Inverse D	Diode		•	l .
I _F	T _j = 150 °C	T _{case} = 25 °C	390	Α
		T_{case} = 80 °C	260	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		600	А
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	2880	Α
Module				
$I_{t(RMS)}$			500	Α
T _{vj}			- 40+ 150	°C
T _{stg}			- 40+ 125	°C
V _{isol}	AC, 1 min.		2500	V

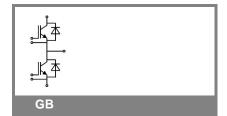
Characteristics $T_c =$		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 12 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C		0,1	0,3	mA
V _{CE0}		T _j = 25 °C		1,4	1,6	V
		T _j = 125 °C		1,6	1,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		3,66	4,66	mΩ
		T _j = 125°C		5	6,33	mΩ
V _{CE(sat)}	I _{Cnom} = 300 A, V _{GE} = 15 V	$T_j = {^{\circ}C_{chiplev.}}$		2,5	3	V
C _{ies}				22	30	nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		3,3	4	nF
C _{res}				1,2	1,6	nF
Q_G	V _{GE} = -8V - +20V			3000		nC
R _{Gint}	T _j = °C			1,25		Ω
t _{d(on)}				200	400	ns
t _r	R_{Gon} = 3,3 Ω	V _{CC} = 600V		115	220	ns
E _{on}		I _C = 300A		38		mJ
^t d(off)	R_{Goff} = 3,3 Ω	T _j = 125 °C		720	900	ns
t _f		$V_{GE} = \pm 15V$		80	100	ns
E _{off}				40		mJ
$R_{th(j-c)}$	per IGBT				0,05	K/W

IGBT Modules

SKM 400GB123D

Features

- MOS input (voltage controlled)
- N channel, homgeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft CAL diodes
- Isolated copper baseplate using DBC Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)


Typical Applications

- · AC inverter drives
- UPS

Characteristics							
Symbol	Conditions	I	min.	typ.	max.	Units	
Inverse D	Diode						
$V_F = V_{EC}$	I_{Fnom} = 300 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V	
		T _j = 125 °C _{chiplev.}		1,8		V	
V _{F0}		T _j = 25 °C		1,1	1,2	V	
		T _j = 125 °C				V	
r _F		T _j = 25 °C		3	4,3	mΩ	
		T _j = 125 °C				$m\Omega$	
I _{RRM}	I _F = 300 A	T _j = 125 °C		140		Α	
Q_{rr}	di/dt = 2000 A/µs	,		13		μC	
E _{rr}	$V_{GE} = 0 \text{ V}; V_{CC} = 600 \text{ V}$					mJ	
$R_{\text{th(j-c)D}}$	per diode				0,125	K/W	
Module							
L _{CE}				15	20	nΗ	
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ	
		T _{case} = 125 °C		0,5		mΩ	
R _{th(c-s)}	per module				0,038	K/W	
M _s	to heat sink M6		3		5	Nm	
w					325	g	

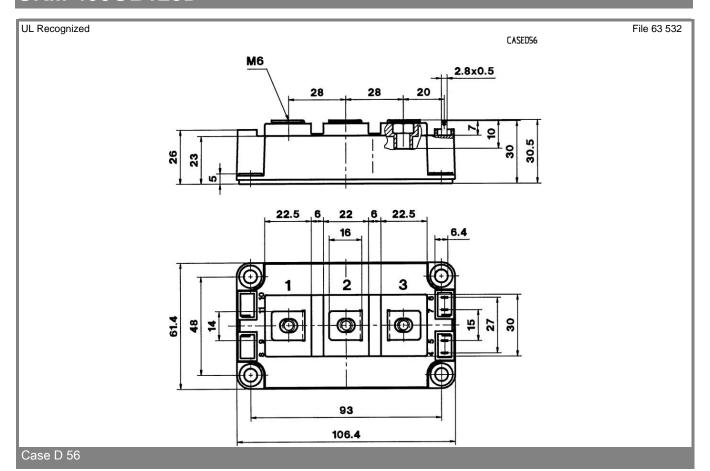
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

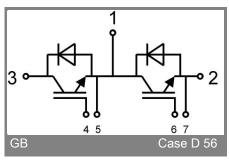
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

IGBT Modules

SKM 400GB123D

Z _{th} Symbol	Conditions	Values	Units
Z _{th(j-c)l}			
R _i	i = 1	32	mk/W
R_i	i = 2	14	mk/W
R _i	i = 3	3,4	mk/W
R_{i}	i = 4	0,6	mk/W
tau _i	i = 1	0,0447	s
tau	i = 2	0,0122	s
taui	i = 3	0,004	s
tau _i	i = 4	0,0002	s
Z _{th(j-c)D}			
R _i	i = 1	80	mk/W
R _i	i = 2	33	mk/W
Ri	i = 3	10,2	mk/W
Ri	i = 4	1,8	mk/W
tau _i	i = 1	0,05	s
tau	i = 2	0,0057	S
taui	i = 3	0,0034	s
tau _i	i = 4	0,0003	s


Features


- MOS input (voltage controlled)
- N channel, homgeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- · Fast & soft CAL diodes
- Isolated copper baseplate using DBC Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

Typical Applications

- AC inverter drives
- UPS

