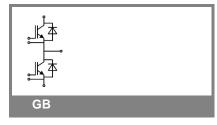


SEMITRANS[®] 3

SPT IGBT Module

SKM 200GB128D

Features


- Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x l_c

Typical Applications

- AC inverter drives
- UPS
- Electronic welders f_{sw} up to 20kHz

 $T_c = 25 \text{ °C}$, unless otherwise specified **Absolute Maximum Ratings** Symbol Conditions Values Units IGBT T_i = 150 °C V V_{CES} 1200 T_c = 25 °C T_i = 150 °C 300 А I_{C} T_c = 80 °C 220 А 300 А $I_{CRM} = 2 x I_{Cnom}$ I_{CRM} ± 20 V V_{GES} $V_{CC} = 600 \text{ V}; \text{ } V_{GE} \leq 20 \text{ V}; \quad \text{ } T_j = 125 \text{ }^\circ\text{C}$ 10 μs t_{psc} VCES < 1200 V Inverse Diode T_i = 150 °C T_{case} = 25 °C 190 А I_F T_{case} = 80 °C 130 А $I_{FRM} = 2x I_{Fnom}$ 300 А I_{FRM} t_p = 10 ms; sin. T_i = 150 °C 1440 А I_{FSM} Module 500 А I_{t(RMS)} T_{vj} - 40... + 150 °C - 40... + 125 °C T_{stg} V_{isol} AC, 1 min. 4000 V

Characteristics T _c =			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 6 \text{ mA}$		4,5	5,5	6,45	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,2	0,6	mA
V _{CE0}		T _j = 25 °C		1	1,15	V
		T _j = 125 °C		0,9	1,05	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		6	8	mΩ
		T _j = 125°C		8	10	mΩ
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V			1,9	2,35	V
		T _j = 125°C _{chiplev.}		2,1	2,55	V
C _{ies}				13		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		2		nF
C _{res}				2		nF
Q _G	V _{GE} = -8V- +20V			1700		nC
R _{Gint}	T _j = 25 °C			2,5		Ω
t _{d(on)}				125		ns
t _r	$R_{Gon} = 7 \Omega$	V _{CC} = 600V		50		ns
E _{on}	di/dt = 4800 A/µs	I _C = 150A		18		mJ
t _{d(off)}	$R_{Goff} = 7 \Omega$	T _j = 125 °C		620		ns
t _f		V _{GE} = ±15V		55		ns
E _{off}		L _s = 20 nH		15		mJ
R _{th(j-c)}	per IGBT				0,095	K/W

SEMITRANS[®] 3

SPT IGBT Module

SKM 200GB128D

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	I _{Fnom} = 150 A; V _{GE} = 0 V			2	2,5	V	
		T _j = 125 °C _{chiplev.}		1,8		V	
V _{F0}		T _j = 25 °C		1,1	1,2	V	
r _F		T _j = 25 °C		6	7,8	mΩ	
I _{RRM}	I _F = 150 A	T _j = 125 °C		190		А	
Q _{rr}	di/dt = 4800 A/µs	-		24		μC	
E _{rr}	V_{GE} = -15 V; V_{CC} = 600 V			8		mJ	
R _{th(j-c)D}	per diode				0,25	K/W	
Module							
L _{CE}				15	20	nH	
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ	
		T _{case} = 125 °C		0,5		mΩ	
R _{th(c-s)}	per module				0,038	K/W	
M _s	to heat sink M6		3		5	Nm	
M _t	to terminals M6		2,5		5	Nm	
w					325	g	

Features

- Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications

- AC inverter drives
- UPS
- Electronic welders f_{sw} up to 20kHz

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

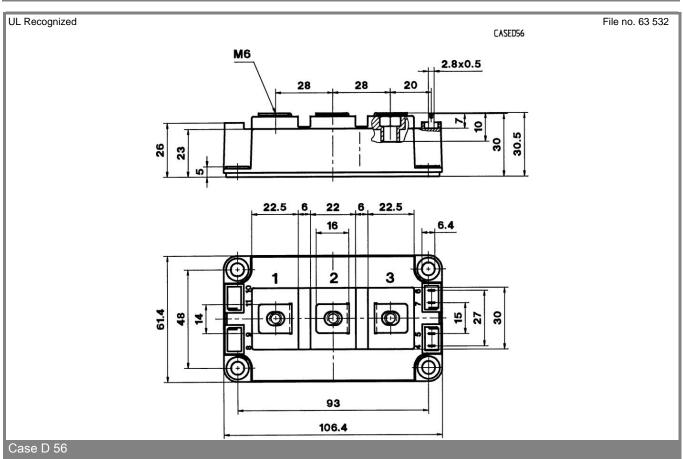
SEMITRANS[®] 3

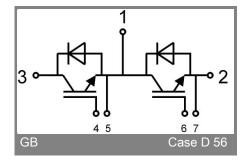
SPT IGBT Module

Z _{th}								
Symbol	Conditions	Values	Units					
Z Ri Ri	i = 1	65	mk/W					
R _i	i = 2	22	mk/W					
R _i	i = 3	6,8	mk/W					
R _i	i = 4	1,2	mk/W					
tau _i	i = 1	0,0744	S					
tau _i	i = 2	0,0078	S					
taui	i = 3	0,0016	S					
tau _i	i = 4	0,0002	s					
Z _{Ri} th(j-c)D	Z							
R _i	i = 1	155	mk/W					
R _i	i = 2	71	mk/W					
R _i	i = 3	21	mk/W					
R _i	i = 4	3	mk/W					
tau	i = 1	0,0716	S					
tau _i	i = 2	0,0056	s					
taui	i = 3	0,0042	s					
tau _i	i = 4	0,0002	s					

Features

Homogeneous Si


SKM 200GB128D


- SPT = Soft-Punch-Through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications

- AC inverter drives
- UPS
- Electronic welders f_{sw} up to 20kHz

