
## SK 10 GD 123



SEMITOP<sup>®</sup> 3

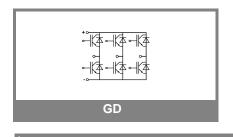
### **IGBT** Module

#### SK 10 GD 123

Preliminary Data

### Features

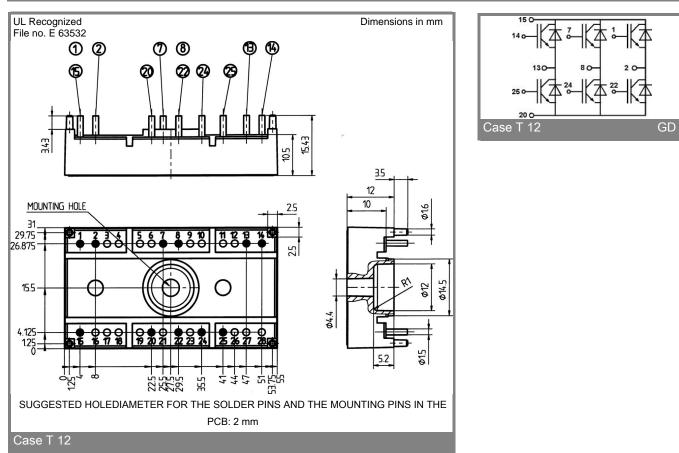
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N channel, homogeneous Silicon structure (NPT-Non punchtrough IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E 63532


### **Typical Applications**

- Switching ( not for linear use )
- Inverter
- Switched mode power supplies

• UPS

| Absolute                            | e Maximum Ratings                                   | $r_s = 25$ C, unless otherwis | T <sub>s</sub> = 25 °C, unless otherwise specified |  |  |
|-------------------------------------|-----------------------------------------------------|-------------------------------|----------------------------------------------------|--|--|
| Symbol                              | Conditions                                          | Values                        | Units                                              |  |  |
| IGBT                                |                                                     |                               |                                                    |  |  |
| V <sub>CES</sub>                    |                                                     | 1200                          | V                                                  |  |  |
| V <sub>GES</sub>                    |                                                     | ± 20                          | V                                                  |  |  |
| I <sub>C</sub>                      | T <sub>s</sub> = 25 (80) °C;                        | 16 (11)                       | A                                                  |  |  |
| I <sub>CM</sub>                     | t <sub>p</sub> < 1 ms; T <sub>s</sub> = 25 (80) °C; | 32 (22)                       | А                                                  |  |  |
| T <sub>j</sub>                      |                                                     | - 40 + 150                    | °C                                                 |  |  |
| Inverse/F                           | Freewheeling CAL diode                              |                               |                                                    |  |  |
| I <sub>F</sub>                      | T <sub>s</sub> = 25 (80) °C;                        | 18 (12)                       | A                                                  |  |  |
| I <sub>FM</sub> = - I <sub>CM</sub> | t <sub>p</sub> < 1 ms; T <sub>s</sub> = 25 (80) °C; | 36 (24)                       | A                                                  |  |  |
| T <sub>j</sub>                      |                                                     | - 40 + 150                    | °C                                                 |  |  |
| T <sub>stg</sub>                    |                                                     | - 40 + 125                    | °C                                                 |  |  |
| T <sub>sol</sub>                    | Terminals, 10 s                                     | 260                           | °C                                                 |  |  |
| V <sub>isol</sub>                   | AC 50 Hz, r.m.s. 1 min. / 1 s                       | 2500 / 3000                   | V                                                  |  |  |


| Characteristics                  |                                                      | T <sub>s</sub> = 25 °C | $T_s$ = 25 °C, unless otherwise specified |           |       |  |  |
|----------------------------------|------------------------------------------------------|------------------------|-------------------------------------------|-----------|-------|--|--|
| Symbol                           | Conditions                                           | min.                   | typ.                                      | max.      | Units |  |  |
| IGBT                             |                                                      |                        |                                           |           |       |  |  |
| V <sub>CE(sat)</sub>             | I <sub>C</sub> = 10 A, T <sub>i</sub> = 25 (125) °C  |                        | 2,7 (3,3)                                 | 3,2 (3,9) | V     |  |  |
| V <sub>GE(th)</sub>              | $V_{CE} = V_{GE}; I_{C} = 0,0004 \text{ A}$          | 4,5                    | 5,5                                       | 6,5       | V     |  |  |
| Cies                             | V <sub>CE</sub> = 25 V; V <sub>GE</sub> = 0 V; 1 MHz |                        | 0,53                                      |           | nF    |  |  |
| R <sub>th(j-s)</sub>             | per IGBT                                             |                        |                                           | 1,8       | K/W   |  |  |
|                                  | per module                                           |                        |                                           |           | K/W   |  |  |
|                                  | under following conditions:                          |                        |                                           |           |       |  |  |
| t <sub>d(on)</sub>               | $V_{CC}$ = 600 V , $V_{GE}$ = ± 15 V                 |                        | 30                                        |           | ns    |  |  |
| t <sub>r</sub>                   | I <sub>C</sub> = 10 A, T <sub>j</sub> = 125 °C       |                        | 45                                        |           | ns    |  |  |
| t <sub>d(off)</sub>              | $R_{Gon} = R_{Goff} = 50 \Omega$                     |                        | 200                                       |           | ns    |  |  |
| t <sub>f</sub>                   |                                                      |                        | 35                                        |           | ns    |  |  |
| $E_{on} + E_{off}$               | Inductive load                                       |                        | 2,3                                       |           | mJ    |  |  |
| Inverse/F                        | Freewheeling CAL diode                               |                        |                                           |           |       |  |  |
| V <sub>F</sub> = V <sub>EC</sub> | I <sub>F</sub> = 10 A; T <sub>i</sub> = 25 (125) °C  |                        | 2 (1,8)                                   | 2,5 (2,3) | V     |  |  |
| V <sub>(TO)</sub>                | T <sub>j</sub> = (125) °C                            |                        | (1)                                       | (1,2)     | V     |  |  |
| r <sub>T</sub>                   | $T_{j} = (125) \ ^{\circ}C$                          |                        | (80)                                      | (110)     | mΩ    |  |  |
| R <sub>th(j-s)</sub>             |                                                      |                        |                                           | 2,1       | K/W   |  |  |
|                                  | under following conditions:                          |                        |                                           |           |       |  |  |
| I <sub>RRM</sub>                 | I <sub>F</sub> = 10 A; V <sub>R</sub> = 600 V        |                        | 12                                        |           | Α     |  |  |
| Q <sub>rr</sub>                  | dl <sub>F</sub> /dt = -300 A/µs                      |                        | 1,8                                       |           | μC    |  |  |
| E <sub>off</sub>                 | V <sub>GE</sub> = 0 V; T <sub>j</sub> = 125 °C       |                        | 0,4                                       |           | mJ    |  |  |
| Mechani                          | cal data                                             | ·                      |                                           |           | •     |  |  |
| M1                               | mounting torque                                      |                        |                                           | 2,5       | Nm    |  |  |
| w                                |                                                      |                        | 30                                        |           | g     |  |  |
| Case                             | SEMITOP <sup>®</sup> 3                               |                        | T 12                                      |           |       |  |  |



19-10-2005 RAM

© by SEMIKRON

# SK 10 GD 123



This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

Downloaded from Elcodis.com electronic components distributor