SK30GD123

IGBT Module

SK30GD123

Preliminary Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings		T _s = 25 °C, unless otherwise specified				
Symbol	Conditions			Values	Units	
IGBT						
V _{CES}	T _j = 25 °C			1200	V	
I _C	T _j = 125 °C	T _s = 25 °C		33	Α	
		$T_s = 80 ^{\circ}C$		22	Α	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			50	Α	
V_{GES}				± 20	٧	
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C		10	μs	
Inverse D	iode					
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$		24	Α	
		$T_s = 80 ^{\circ}C$		17	Α	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}				Α	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		180	Α	
Module						
I _{t(RMS)}					Α	
T_{vj}		·		-40 + 150	°C	
T _{stg}				-40 +125	°C	
V _{isol}	AC, 1 min.			2500	V	

Characteristics $T_s =$			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT	·						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,15	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 30 V	T _j = 25 °C			120	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _i = 25 °C		1,2		V	
		T _j = 125 °C		1,2		V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		52		mΩ	
		T _j = 125°C		76		mΩ	
V _{CE(sat)}	I _{Cnom} = 25 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}	2	2,5	3	V	
		T _j = 125°C _{chiplev} .		3,1	3,7	V	
C _{ies}				1,65		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,25		nF	
C _{res}				0,11		nF	
t _{d(on)}				65		ns	
τ _r	$R_{Gon} = 47 \Omega$	V _{CC} = 600V		100		ns	
E _{on}		I _C = 25A		3,5		mJ	
^t d(off)	R_{Goff} = 47 Ω	T _j = 125 °C		430		ns	
τ _f		V _{GE} =±15V		35		ns	
E_{off}				2,5		mJ	
$R_{th(j-s)}$	per IGBT				1	K/W	

SK30GD123

IGBT Module

SK30GD123

Preliminary Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse D	Diode					•		
$V_F = V_{EC}$	I_{Fnom} = 15 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2	2,5	V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,8	2,3	V		
V _{F0}		T _j = 125 °C		1	1,2	V		
r _F		T _j = 125 °C		53	73	mΩ		
I _{RRM}	I _F = 15 A	T _i = 125 °C		16		Α		
Q_{rr}	$di/dt = -200 A/\mu s$,		2,7		μC		
E _{rr}	V _{CC} = 600V			0,6		mJ		
R _{th(j-s)D}	per diode				1,7	K/W		
M_s	to heat sink M1		2,25		2,5	Nm		
w				30		g		

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

