

POWER TRANSFORMER PC Mount: Dual Primary

F-372P

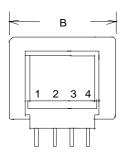
Electrical Specifications (@25C)

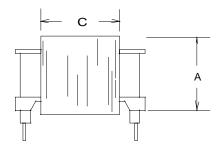
- 1. Maximum Power: 24.0 VA
- 2. Primary: Series
- Series:230V@50/60 Hz Parallel: 115V@50/60Hz

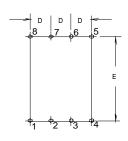
	i uiuioi.	
3. Secondary:	Series:	16.0V CT @ 1.50 Amps
	Parallel:	8.0V CT @ 3.00 Amps

Description:

The F-372P is part of a wide selection of plug-in types that meet the needs of PC boards and solid state power supply design. This transformer can satisfy power as well as control and instrumentation applications.

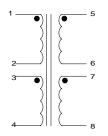

Construction:


Wound on a single channel nylon bobbin. Materials are UL recognized, Class B (130° C) rated.


Safety:

These products are 100% hipot tested with an insulation of 1500V between primary and secondary windings.

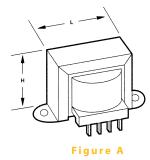
	* 100			
10	in the second se		-	
	de			
		P	and a	

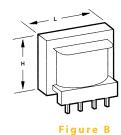


Dimensions: Units: In inche					
А	В	С	D	Е	
1.375	1.625	2.250	0.250	2.109	

Pin length: 0.187 in. Pin size: 0.20 x .041 in. Weight: 13.3 oz

Schematic:




Primary: Series - 1 to 4, Jumper 2 to 3 Parallel - 1 to 3, Jumper 1 to 3 and 2 to 4 Secondary: Series - 3 to 6, Jumper 4 to 5 Parallel - 3 to 5, Jumper 3 to 5 and 4 to 6

RoHS Compliance: As of manufacturing date February 2005, all standard products meet the requirements of 2002/95/EC, known as the RoHS initiative.

Power Transformers

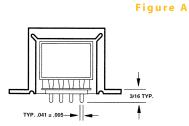
PC Mount

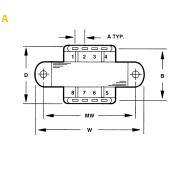
Description

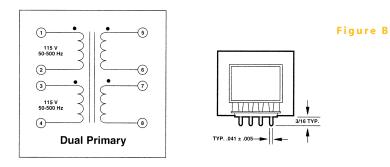
Triad power transformers are offered in a wide selection of plug-in types to meet the needs of PC board and solid state power supply designs. These transformers can satisfy power as well as control and instrumentation applications. The transformers are available in a single or dual primary and dual center tapped secondary configurations.

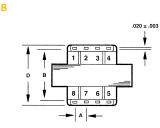
Specifications Primary: 115/230 V, 50/60 Hz

: Dual Primary, Dual Secondaries


Туре				Secondary		Dimensions							Wt.
Section	No.	Figure	VA	Series	Parallel	H	W	D	L	A	В	MW	0z.
A	F-3132P F-333P F-367P	В	1½	15.0V CT @ 0.1A 30.0V CT @ 0.050A 230.0V CT @ 0.0065A	7.5V @ 0.2A 15.0V @ 0.100A 115.0V @ 0.013A	1¾16	•	11/8	•	13/64	1	•	4.0
В	F-348XP	A	4½	12.6V CT @ 0.350A	6.3V @ 0.700A	1¾	2¾	1¼	1%	1/4	1764	2	6.5
C	F-3142XP F-349XP F-350XP F-358XP F-3143XP F-363XP	A	4 ½	15.0V CT @ 0.3A 16.0V CT @ 0.280A 24.0V CT @ 0.180A 20.0V CT @ 0.225A 30.0V CT @ 0.15A 230.0V CT @ 0.020A	7.5V @ 0.6A 8.0V @ 0.560A 12.0V @ 0.360A 10.0V @ 0.450A 15.0V @ 0.3A 115.0V @ 0.040A	17/16	2¾	11/4	1%	¥₄	1764	2	6.5
D	F-3152XP F-3153XP	A	7½	15.0V CT @ 0.5A 30.0V CT @ 0.25A	7.5V @ 1.0A 15.0V @ 0.5A	1%	2 ¹³ /16	17/16	17/8	1/ ₄	15/16	2¾	11.0
Е	F-359XP F-362XP F-365XP F-366XP F-369XP	A	10	24.0V CT @ 0.450A 20.0V CT @ 0.500A 12.6V CT @ 0.800A 16.0V CT @ 0.640A 230.0V CT @ 0.044A	12.0V @ 0.900A 10.0V @ 1.0A 6.3.0V @ 1.6A 8.0V @ 1.28A 115.0V @ 0.088A	1%	2 ¹³ ⁄16	1716	17%	1∕4	15/16	2⅔	11.0
F	F-370P F-371P F-372P F-373P F-374P F-375P F-375P F-377P F-377P F-378P F-379P	В	24	10.0V CT @ 2.4A 12.6V CT @ 2.0A 16.0V CT @ 1.5A 20.0V CT @ 1.2A 24.0V CT @ 1.0A 28.0V CT @ 0.8A 34.0V CT @ 0.7A 40.0V CT @ 0.6A 56.0V CT @ 0.42A 120.0V CT @ 0.2A	5.0V @ 4.8A 6.3V @ 4.0A 8.0V @ 3.0A 10.0V @ 2.4A 12.0V @ 2.0A 14.0V @ 1.6A 17.0V @ 1.4A 20.0V @ 1.2A 28.0V @ 0.84A 60.0V @ 0.4A	1¾	•	21/4	11/8	<i>¥</i> ₄	2764	·	13.3


CT = Center Tap Mounting hole size: Figure $A = \frac{3}{16}$ "


:: Outline Dimensions


Technical Notes

- The transformers with dual primaries permit their use in equipment for sale in both foreign and domestic markets.
 Hi-pot tested at 1,500 VRMS.

