Precision Monolithic Quad SPST CMOS Analog Switches

DESCRIPTION

The DG411 series of monolithic quad analog switches was designed to provide high speed, low error switching of precision analog signals. Combining low power ($0.35 \mu \mathrm{~W}$) with high speed (t_{ON} : 110 ns), the DG411 family is ideally suited for portable and battery powered industrial and military applications.
To achieve high-voltage ratings and superior switching performance, the DG411 series was built on Vishay Siliconix's high voltage silicon gate process. An epitaxial layer prevents latchup.

Each switch conducts equally well in both directions when on, and blocks input voltages up to the supply levels when off.

The DG411 and DG412 respond to opposite control logic as shown in the Truth Table. The DG413 has two normally open and two normally closed switches.

FEATURES

- 44 V Supply Max Rating
- $\pm 15 \mathrm{~V}$ Analog Signal Range
- On-Resistance - r ${ }_{\text {DS(on) }}$: 25Ω
- Fast Switching - $\mathrm{t}_{\mathrm{ON}}: 110 \mathrm{~ns}$
- Ultra Low Power - $\mathrm{P}_{\mathrm{D}}: 0.35 \mu \mathrm{~W}$
- TTL, CMOS Compatible
- Single Supply Capability

BENEFITS

- Widest Dynamic Range
- Low Signal Errors and Distortion
- Break-Before-Make Switching Action
- Simple Interfacing

APPLICATIONS

- Precision Automatic Test Equipment
- Precision Data Acquisition
- Communication Systems
- Battery Powered Systems
- Computer Peripherals

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	DG411	DG412
0	ON	OFF
1	OFF	ON

Logic " 0 " $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

TRUTH TABLE		
Logic	$\mathbf{S W}_{\mathbf{1}}, \mathbf{S W}_{\mathbf{4}}$	$\mathbf{S W}_{\mathbf{2}}, \mathbf{S W}_{\mathbf{3}}$
0	OFF	ON
1	ON	OFF

Logic "0" $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

* Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay Siliconix

ORDERING INFORMATION		
Temp Range	Package	Part Number
DG411/DG412		
- 40 to $85{ }^{\circ} \mathrm{C}$	16-Pin Plastic DIP	$\begin{gathered} \text { DG411DJ } \\ \text { DG411DJ-E3 } \end{gathered}$
-40 to $85^{\circ} \mathrm{C}$		$\begin{gathered} \hline \text { DG412DJ } \\ \text { DG412DJ-E3 } \end{gathered}$
	16-Pin Narrow SOIC	DG411DY DG411DY-E3 DG411DY-T1 DG411DY-T1-E3
		DG412DY DG412DY-E3 DG412DY-T1 DG412DY-T1-E3
DG413		
-40 to $85{ }^{\circ} \mathrm{C}$	16-Pin Plastic DIP	$\begin{gathered} \text { DG413DJ } \\ \text { DG413DJ-E3 } \end{gathered}$
	16-Pin Narrow SOIC	DG413DY DG413DY-E3 DG413DY-T1 DG413DY-T1-E3

ABSOLUTE MAXIMUM RATINGS			
Parameter		Limit	Unit
V+ to V-		44	V
GND to V-		25	
V_{L}		(GND - 0.3) to (V+) + 0.3	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		(V-) -2 to (V+) + 2 or 30 mA , whichever occurs first	
Continuous Current (Any Terminal)		30	mA
Peak Current, S or D (Pulsed at $1 \mathrm{~ms}, 10$ \% duty cycle)		100	
Storage Temperature	(AK, AZ Suffix)	- 65 to 150	${ }^{\circ} \mathrm{C}$
	(DJ, DY Suffix)	- 65 to 125	
Power Dissipation (Package) ${ }^{\text {b }}$	16-Pin Plastic DIP ${ }^{\text {c }}$	470	mW
	16-Pin Narrow SOIC ${ }^{\text {d }}$	600	
	16-Pin CerDIP ${ }^{\text {e }}$	900	
	LCC-20 ${ }^{\text {e }}$	900	

Notes:
a. Signals on $\mathrm{S}_{\mathrm{X}}, \mathrm{D}_{\mathrm{X}}$, or $\mathrm{IN} \mathrm{N}_{\mathrm{X}}$ exceeding $\mathrm{V}+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
d. Derate $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
e. Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

SPECIFICATIONS ${ }^{\text {a }}$									
Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{f}} \end{gathered}$	Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	$\begin{gathered} \text { A Suffix } \\ -55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & \text { D Suffix } \\ & -40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$		Unit
					Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		-15	15	-15	15	V
Drain-Source On-Resistance	${ }^{\text {r }}$ (${ }^{\text {(on) }}$	$\begin{aligned} & V_{+}=13.5 \mathrm{~V}, \mathrm{~V}-=-13.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 8.5 \mathrm{~V} \end{aligned}$	Room Full	25		$\begin{aligned} & 35 \\ & 45 \end{aligned}$		$\begin{aligned} & 35 \\ & 45 \end{aligned}$	Ω
Switch Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} V+=16.5, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{S}= \pm 15.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	± 0.1	$\begin{gathered} -0.25 \\ -20 \end{gathered}$	$\begin{gathered} \hline 0.25 \\ 20 \end{gathered}$	$\begin{gathered} -0.25 \\ -5 \end{gathered}$	$\begin{gathered} 0.25 \\ 5 \end{gathered}$	
	${ }^{\mathrm{D} \text { (off) }}$		Room Full	± 0.1	$\begin{gathered} -0.25 \\ -20 \end{gathered}$	$\begin{gathered} 0.25 \\ 20 \end{gathered}$	$\begin{gathered} -0.25 \\ -5 \end{gathered}$	$\begin{gathered} 0.25 \\ 5 \end{gathered}$	nA
Channel On Leakage Current	${ }^{\text {D (on) }}$	$\begin{gathered} \mathrm{V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ V_{S}=V_{D}= \pm 15.5 \mathrm{~V} \end{gathered}$	Room Full	± 0.1	$\begin{aligned} & \hline-0.4 \\ & -40 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 40 \end{aligned}$	$\begin{gathered} \hline-0.4 \\ -10 \end{gathered}$	$\begin{aligned} & \hline 0.4 \\ & 10 \end{aligned}$	
Digital Control									
Input Current, $\mathrm{V}_{\text {IN }}$ Low	IIL	$\mathrm{V}_{\text {IN }}$ under test $=0.8 \mathrm{~V}$	Full	0.005	-0.5	0.5	-0.5	0.5	A
Input Current, $\mathrm{V}_{\text {IN }}$ High	$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{\text {IN }}$ under test $=2.4 \mathrm{~V}$	Full	0.005	-0.5	0.5	-0.5	0.5	$\mu \mathrm{A}$
Dynamic Characteristics									
Turn-On Time	t_{O}	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \text { See Figure } 2 \end{gathered}$	$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \end{aligned}$	110		$\begin{aligned} & 175 \\ & 240 \end{aligned}$		$\begin{aligned} & 175 \\ & 220 \end{aligned}$	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	100		$\begin{aligned} & \hline 145 \\ & 160 \end{aligned}$		$\begin{aligned} & \hline 145 \\ & 160 \end{aligned}$	ns
Break-Before-Make Time Delay	$t_{\text {D }}$	$\begin{aligned} & \hline \text { DG413 Only, } \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	Room	25					
Charge Injection	Q	$\begin{gathered} \mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega \\ \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF} \end{gathered}$	Room	5					pC
Off Isolation ${ }^{\text {e }}$	OIRR	$\begin{gathered} R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \\ f=1 \mathrm{MHz} \end{gathered}$	Room	68					
Channel-to-Channel Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		Room	85					dB
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{S}_{\text {(off) }}}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	9					
Drain Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (off) }}$		Room	9					pF
Channel On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$		Room	35					
Power Supplies									
Positive Supply Current	$1+$	$\begin{gathered} \mathrm{V}_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	0.0001		$\begin{aligned} & 1 \\ & 5 \end{aligned}$		1 5	
Negative Supply Current	I-		$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	-0.0001	$\begin{aligned} & \hline-1 \\ & -5 \\ & \hline \end{aligned}$		$\begin{aligned} & -1 \\ & -5 \end{aligned}$		$\mu \mathrm{A}$
Logic Supply Current	I_{L}		$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	0.0001		$\begin{aligned} & 1 \\ & 5 \end{aligned}$		$\begin{aligned} & 1 \\ & 5 \end{aligned}$	
Ground Current	$\mathrm{I}_{\text {GND }}$		$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	-0.0001	$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$		$\begin{aligned} & -1 \\ & -5 \end{aligned}$		

SPECIFICATIONS FOR UNIPOLAR SUPPLIES ${ }^{\text {a }}$

Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{f} \end{gathered}$	Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	$\begin{gathered} \text { A Suffix } \\ -55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { D Suffix } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit
					Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full			12		12	V
Drain-Source On-Resistance	${ }^{\text {r DS(on) }}$	$\begin{gathered} V+=10.8 \mathrm{~V} \\ I_{S}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V}, 8 \mathrm{~V} \end{gathered}$	Room Full	40		$\begin{gathered} 80 \\ 100 \end{gathered}$		$\begin{gathered} 80 \\ 100 \end{gathered}$	Ω
Dynamic Characteristics									
Turn-On Time	${ }^{\text {ton }}$	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Room Hot	175		$\begin{aligned} & 250 \\ & 400 \end{aligned}$		$\begin{aligned} & 250 \\ & 315 \end{aligned}$	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$, See Figure 2	Room Hot	95		$\begin{aligned} & \hline 125 \\ & 140 \end{aligned}$		$\begin{aligned} & \hline 125 \\ & 140 \end{aligned}$	ns
Break-Before-Make Time Delay	${ }^{\text {t }}$	$\begin{gathered} \text { DG413 Only, } \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room	25					
Charge Injection	Q	$\mathrm{V}_{\mathrm{g}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}$	Room	25					pC
Power Supplies									
Positive Supply Current	$1+$	$\mathrm{V}+=13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0$ or 5 V	Room Hot	0.0001		$\begin{aligned} & 1 \\ & 5 \end{aligned}$		$\begin{aligned} & 1 \\ & 5 \end{aligned}$	
Negative Supply Current	I-		Room Hot	- 0.0001	$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$		$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$		
Logic Supply Current	IL		Room Hot	0.0001		$\begin{aligned} & \hline 1 \\ & 5 \end{aligned}$		$\begin{aligned} & \hline 1 \\ & 5 \end{aligned}$	
Ground Current	$\mathrm{I}_{\text {GND }}$		Room Hot	-0.0001	$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$		-5		

Notes:
a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

On-Resistance vs. V_{D} and Power Supply Voltage

On-Resistance vs. V_{D} and Unipolar Supply Voltage

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Charge Injection vs. Analog Voltage

Input Switching Threshold vs. Supply Voltage

I_{D}, I_{S} Leakages vs. Temperature

Charge Injection vs. Analog Voltage

Switching Time vs. Temperature

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Supply Current vs. Input Switching Frequency

SCHEMATIC DIAGRAM (TYPICAL CHANNEL)

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)

$$
V_{O}=V_{S} \quad \frac{R_{L}}{R_{L}+r_{\text {DS(on) }}}
$$

$$
{ }^{*} \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{ON}}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{OFF}}
$$

Note: Logic input waveform is inverted for switches that have the opposite logic sense control

Figure 2. Switching Time

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)
Figure 3. Break-Before-Make (DG413)

IN N_{X} dependent on switch configuration Input polarity determined by sense of switch.
Figure 4. Charge Injection

Figure 5. Crosstalk

Figure 6. Off Isolation

APPLICATIONS

Single Supply Operation:

The DG411/412/413 can be operated with unipolar supplies from 5 V to 44 V . These devices are characterized and tested for unipolar supply operation at 12 V to facilitate the majority of applications. In single supply operation, V_{+}is tied to V_{L} and V - is tied to 0 V . See Input Switching Threshold vs. Supply Voltage curve for V_{L} versus input threshold requirments.

Figure 7. Source/Drain Capacitances

Summing Amplifier

When driving a high impedance, high capacitance load such as shown in Figure 8, where the inputs to the summing amplifier have some noise filtering, it is necessary to have shunt switches for rapid discharge of the filter capacitor, thus preventing offsets from occurring at the output.

Figure 8. Summing Amplifier

[^0]
Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?70050.

