MCP601/1R/2/3/4

2.7V to 6.0V Single Supply CMOS Op Amps

Features

• Single-Supply: 2.7V to 6.0V

· Rail-to-Rail Output

• Input Range Includes Ground

Gain Bandwidth Product: 2.8 MHz (typical)

· Unity-Gain Stable

Low Quiescent Current: 230 μA/amplifier (typical)

• Chip Select (CS): MCP603 only

• Temperature Ranges:

Industrial: -40°C to +85°C
 Extended: -40°C to +125°C
 Available in Single, Dual, and Quad

Typical Applications

- Portable Equipment
- A/D Converter Driver
- Photo Diode Pre-amp
- Analog Filters
- · Data Acquisition
- · Notebooks and PDAs
- Sensor Interface

Available Tools

- SPICE Macro Models
- FilterLab[®] Software
- Mindi™ Simulation Tool
- MAPS (Microchip Advanced Part Selector)
- Analog Demonstration and Evaluation Boards
- · Application Notes

Description

The Microchip Technology Inc. MCP601/1R/2/3/4 family of low-power operational amplifiers (op amps) are offered in single (MCP601), single with Chip Select ($\overline{\text{CS}}$) (MCP603), dual (MCP602), and quad (MCP604) configurations. These op amps utilize an advanced CMOS technology that provides low bias current, high-speed operation, high open-loop gain, and rail-to-rail output swing. This product offering operates with a single supply voltage that can be as low as 2.7V, while drawing 230 μA (typical) of quiescent current per amplifier. In addition, the common mode input voltage range goes 0.3V below ground, making these amplifiers ideal for single-supply operation.

These devices are appropriate for low power, battery operated circuits due to the low quiescent current, for A/D convert driver amplifiers because of their wide bandwidth or for anti-aliasing filters by virtue of their low input bias current.

The MCP601, MCP602, and MCP603 are available in standard 8-lead PDIP, SOIC, and TSSOP packages. The MCP601 and MCP601R are also available in a standard 5-lead SOT-23 package, while the MCP603 is available in a standard 6-lead SOT-23 package. The MCP604 is offered in standard 14-lead PDIP, SOIC, and TSSOP packages.

The MCP601/1R/2/3/4 family is available in the Industrial and Extended temperature ranges and has a power supply range of 2.7V to 6.0V.

Package Types

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V _{DD} – V _{SS}
Current at Input Pins±2 mA
Analog Inputs (V _{IN} +, V _{IN} -) $\dagger\dagger$ V_{SS} – 1.0V to V_{DD} + 1.0V
All Other Inputs and Outputs $\rm V_{SS}$ – 0.3V to $\rm V_{DD}$ + 0.3V
Difference Input Voltage V _{DD} - V _{SS}
Output Short Circuit CurrentContinuous
Current at Output and Supply Pins±30 mA
Storage Temperature65°C to +150°C
Maximum Junction Temperature (T _J)+150°C
ESD Protection On All Pins (HBM; MM) ≥ 3 kV; 200V

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

†† See Section 4.1.2 "Input Voltage and Current Limits".

DC CHARACTERISTICS

Electrical Specifications: Unless	otherwise s	pecified. T ₄	= +25°C	V _{DD} = +2.	7V to +5	5V. Voc = GND. Vou = Vpp/2			
Electrical Specifications: Unless otherwise specified, $\underline{T}_A = +25^{\circ}\text{C}$, $V_{DD} = +2.7\text{V}$ to +5.5V, $V_{SS} = \text{GND}$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, and $R_L = 100 \text{ k}\Omega$ to V_L , and $\overline{\text{CS}}$ is tied low. (Refer to Figure 1-2 and Figure 1-3).									
Parameters	Sym	Min	Тур	Max	Units	Conditions			
Input Offset									
Input Offset Voltage	Vos	-2	±0.7	+2	mV				
Industrial Temperature	Vos	-3	±1	+3	mV	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C (Note 1)}$			
Extended Temperature	Vos	-4.5	±1	+4.5	mV	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C (Note 1)}$			
Input Offset Temperature Drift	$\Delta V_{OS}/\Delta T_{A}$	_	±2.5	_	μV/°C	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			
Power Supply Rejection	PSRR	80	88	_	dB	V _{DD} = 2.7V to 5.5V			
Input Current and Impedance									
Input Bias Current	I_{B}		1		pА				
Industrial Temperature	Ι _Β	_	20	60	pА	T _A = +85°C (Note 1)			
Extended Temperature	I_{B}	_	450	5000	pА	T _A = +125°C (Note 1)			
Input Offset Current	Ios		±1		pА				
Common Mode Input Impedance	Z _{CM}	_	10 ¹³ 6	-	ΩpF				
Differential Input Impedance	Z _{DIFF}	_	10 ¹³ 3	_	Ω pF				
Common Mode		'							
Common Mode Input Range	V_{CMR}	$V_{SS} - 0.3$	_	V _{DD} – 1.2	V				
Common Mode Rejection Ratio	CMRR	75	90	-	dB	$V_{DD} = 5.0V$, $V_{CM} = -0.3V$ to 3.8V			
Open-loop Gain									
DC Open-loop Gain (large signal)	A _{OL}	100	115		dB	$R_L = 25 \text{ k}\Omega \text{ to V}_L,$ $V_{OUT} = 0.1 \text{V to V}_{DD} - 0.1 \text{V}$			
	A _{OL}	95	110	_	dB	$R_L = 5 \text{ k}\Omega \text{ to } V_L,$ $V_{OUT} = 0.1 \text{V to } V_{DD} - 0.1 \text{V}$			
Output	l l	l		l l					
Maximum Output Voltage Swing	V_{OL} , V_{OH}	V _{SS} + 15	_	V _{DD} – 20	mV	$R_L = 25 \text{ k}\Omega \text{ to } V_L$, Output overdrive = 0.5V			
	V _{OL} , V _{OH}	V _{SS} + 45		V _{DD} – 60	mV	$R_L = 5 \text{ k}\Omega \text{ to } V_L, \text{ Output overdrive} = 0.5 \text{V}$			
Linear Output Voltage Swing	V _{OUT}	V _{SS} + 100		V _{DD} – 100	mV	$R_L = 25 \text{ k}\Omega \text{ to } V_L, A_{OL} \ge 100 \text{ dB}$			
	V _{OUT}	V _{SS} + 100		V _{DD} – 100	mV	$R_L = 5 \text{ k}\Omega \text{ to } V_L, A_{OL} \ge 95 \text{ dB}$			
Output Short Circuit Current	I _{SC}	_	±22	_	mA	V _{DD} = 5.5V			
	I _{SC}	_	±12	_	mA	V _{DD} = 2.7V			
Power Supply									
Supply Voltage	V_{DD}	2.7		6.0	V	(Note 2)			
Quiescent Current per Amplifier	IQ		230	325	μΑ	$I_{O} = 0$			

Note 1: These specifications are not tested in either the SOT-23 or TSSOP packages with date codes older than YYWW = 0408. In these cases, the minimum and maximum values are by design and characterization only.

^{2:} All parts with date codes November 2007 and later have been screened to ensure operation at V_{DD}=6.0V. However, the other minimum and maximum specifications are measured at 1.4V and/or 5.5V.

AC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +2.7V$ to $+5.5V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_{CM} = V_{DD}/2$, and $V_{CM} = V_{DD}/2$, $V_{CM} = V_{DD}/2$, $V_{CM} = V_{DD}/2$, and $V_{CM} = V_{DD}/2$, $V_{$									
Parameters	Sym	Min	Тур	Max	Units	Conditions			
Frequency Response									
Gain Bandwidth Product	GBWP	_	2.8	_	MHz				
Phase Margin	PM	_	50	_	0	G = +1 V/V			
Step Response									
Slew Rate	SR	_	2.3	_	V/µs	G = +1 V/V			
Settling Time (0.01%)	t _{settle}	_	4.5	_	μs	G = +1 V/V, 3.8V step			
Noise									
Input Noise Voltage	E _{ni}	_	7	_	μV _{P-P}	f = 0.1 Hz to 10 Hz			
Input Noise Voltage Density	e _{ni}	_	29	_	nV/√Hz	f = 1 kHz			
	e _{ni}	_	21	_	nV/√Hz	f = 10 kHz			
Input Noise Current Density	i _{ni}	_	0.6	_	fA/√Hz	f = 1 kHz			

MCP603 CHIP SELECT (CS) CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +2.7V$ to $+5.5V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_{CM} = V_{DD}/2$, and $V_{CM} = V_{DD}/2$, $V_{CM} = V_{DD}/2$, $V_{CM} = V_{DD}/2$, $V_{CM} = V_{DD}/2$, and $V_{CM} = V_{DD}/2$, $V_{$										
Parameters	Sym	Min	Тур	Max	Units	Conditions				
CS Low Specifications										
CS Logic Threshold, Low	V_{IL}	V _{SS}	_	0.2 V _{DD}	V					
CS Input Current, Low	I _{CSL}	-1.0	_	_	μA	$\overline{\text{CS}} = 0.2 \text{V}_{\text{DD}}$				
CS High Specifications										
CS Logic Threshold, High	V_{IH}	0.8 V _{DD}	_	V_{DD}	V					
CS Input Current, High	I _{CSH}	_	0.7	2.0	μA	$\overline{\text{CS}} = V_{\text{DD}}$				
Shutdown V _{SS} current	I _{Q_SHDN}	-2.0	-0.7	_	μA	$\overline{\text{CS}} = V_{\text{DD}}$				
Amplifier Output Leakage in Shutdown	I _{O_SHDN}	_	1	_	nA					
Timing										
CS Low to Amplifier Output Turn-on Time	t _{ON}	_	3.1	10	μs	$\overline{\text{CS}} \leq 0.2 \text{V}_{\text{DD}}, \text{ G} = +1 \text{ V/V}$				
CS High to Amplifier Output High-Z Time	t _{OFF}	_	100	_	ns	$\overline{\text{CS}} \ge 0.8 \text{V}_{\text{DD}}, \text{G} = +1 \text{V/V}, \text{No load}.$				
Hysteresis	V _{HYST}	_	0.4	_	V	$V_{DD} = 5.0V$				

FIGURE 1-1: MCP603 Chip Select (CS) Timing Diagram.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $V_{DD} = +2.7V$ to +5.5V and $V_{SS} = GND$.									
Parameters	Sym	Min	Тур	Max	Units	Conditions			
Temperature Ranges									
Specified Temperature Range	T _A	-40	_	+85	°C	Industrial temperature parts			
	T _A	-40	_	+125	°C	Extended temperature parts			
Operating Temperature Range	T _A	-40	_	+125	°C	Note			
Storage Temperature Range	T _A	-65	_	+150	°C				
Thermal Package Resistances									
Thermal Resistance, 5L-SOT23	θ_{JA}	_	256	_	°C/W				
Thermal Resistance, 6L-SOT23	θ_{JA}	_	230	_	°C/W				
Thermal Resistance, 8L-PDIP	θ_{JA}	_	85	_	°C/W				
Thermal Resistance, 8L-SOIC	θ_{JA}	_	163	_	°C/W				
Thermal Resistance, 8L-TSSOP	θ_{JA}	_	124	_	°C/W				
Thermal Resistance, 14L-PDIP	θ_{JA}	_	70	_	°C/W				
Thermal Resistance, 14L-SOIC	θ_{JA}	_	120	_	°C/W				
Thermal Resistance, 14L-TSSOP	θ_{JA}	_	100	_	°C/W				

Note: The Industrial temperature parts operate over this extended range, but with reduced performance. The Extended temperature specs do not apply to Industrial temperature parts. In any case, the internal Junction temperature (T_J) must not exceed the absolute maximum specification of 150°C.

1.1 Test Circuits

The test circuits used for the DC and AC tests are shown in Figure 1-2 and Figure 1-2. The bypass capacitors are laid out according to the rules discussed in **Section 4.5 "Supply Bypass"**.

FIGURE 1-2: AC and DC Test Circuit for Most Non-Inverting Gain Conditions.

FIGURE 1-3: AC and DC Test Circuit for Most Inverting Gain Conditions.

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

	Units	MILLIMETERS				
	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N		8			
Pitch	е		1.27 BSC			
Overall Height	Α	_	_	1.75		
Molded Package Thickness	A2	1.25	_	_		
Standoff §	A1	0.10	_	0.25		
Overall Width	E	6.00 BSC				
Molded Package Width	E1	3.90 BSC				
Overall Length	D	4.90 BSC				
Chamfer (optional)	h	0.25 – 0.50				
Foot Length	L	0.40	_	1.27		
Footprint	L1	1.04 REF				
Foot Angle	ф	0°	_	8°		
Lead Thickness	С	0.17 – 0.25				
Lead Width	b	0.31 – 0.51				
Mold Draft Angle Top	α	5° – 15°				
Mold Draft Angle Bottom	β	5°	_	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-057B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	_Y	/XX		Exa	mples:	
Device Tem	perature	Package		a)	MCP601-I/P:	Single Op Amp, Industrial Temperature, 8 lead PDIP package.
	ange		$\neg $	b)	MCP601-E/SN:	, ,
Device	MCP601 MCP601T MCP601RT	Single Op Amp Single Op Amp (Tape and Reel for SOT-23, SOIC and TSSOP Single Op Amp)	c)	MCP601T-E/ST:	
	MCP602 MCP602T	(Tape and Reel for SOIC and TSSOP) Single Op Amp with Chip Select Single Op Amp with Chip Select (Tape and Reel for SOT-23, SOIC and TSSOP) Quad Op Amp Quad Op Amp		d)	MCP601RT-I/OT	
	MCP603 MCP603T MCP604 MCP604T)	e)	MCP601RT-E/O	
Temperature Range	l = -	(Tape and Reel for SOIC and TSSOP) 40° C to +85° C		a)	MCP602-I/SN:	Dual Op Amp, Industrial Temperature, 8 lead SOIC package.
romporature reange		40° C to +125° C		b)	MCP602-E/P:	Dual Op Amp, Extended Temperature, 8 lead PDIP package.
Package	CH = P P = P SN = P	lastic SOT-23, 5-lead (MCP601 only) lastic SOT-23, 6-lead (MCP603 only) lastic DIP (300 mil body), 8, 14 lead lastic SOIC (3.90 mm body), 8 lead		c)	MCP602T-E/ST:	Tape and Reel, Extended Temperature, Dual Op Amp, 8 lead TSSOP package.
		lastic SOIC (3.90 mm body), 14 lead lastic TSSOP (4.4 mm body), 8, 14 lead		a)	MCP603-I/SN:	Industrial Temperature, Single Op Amp with Chip Select, 8 lead SOIC package.
				b)	MCP603-E/P:	Extended Temperature, Single Op Amp with Chip Select, 8 lead PDIP package.
				c)	MCP603T-E/ST:	Tape and Reel, Extended Temperature, Single Op Amp with Chip Select 8 lead TSSOP package.
				d)	MCP603T-I/SN:	Tape and Reel, Industrial Temperature, Single Op Amp with Chip Select, 8 lead SOIC package.
				a)	MCP604-I/P:	Industrial Temperature, Quad Op Amp, 14 lead PDIP package.
				b)	MCP604-E/SL:	Extended Temperature, Quad Op Amp, 14 lead SOIC package.
				c)	MCP604T-E/ST:	Tape and Reel, Extended Temperature, Quad Op Amp, 14 lead TSSOP package.