Quad 2-input NAND gate

74HC/HCT03

FEATURES

· Level shift capability

• Output capability: standard (open drain)

I_{CC} category: SSI

GENERAL DESCRIPTION

The 74HC/HCT03 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT03 provide the 2-input NAND function.

The 74HC/HCT03 have open-drain N-transistor outputs, which are not clamped by a diode connected to V_{CC} . In the OFF-state, i.e. when one input is LOW, the output may be pulled to any voltage between GND and V_{Omax} . This allows the device to be used as a LOW-to-HIGH or HIGH-to-LOW level shifter. For digital operation and OR-tied output applications, these devices must have a pull-up resistor to establish a logic HIGH level.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
STIVIBUL	PARAMETER	CONDITIONS	НС	нст	UNIT
t _{PZL} / t _{PLZ}	propagation delay	$C_L = 15 \text{ pF}; R_L = 1 \text{ k}\Omega; V_{CC} = 5 \text{ V}$	8	10	ns
C _I	input capacitance		3.5	3.5	pF
C_{PD}	power dissipation capacitance per gate	notes 1, 2 and 3	4.0	4.0	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o) + \sum (V_O^2/R_L) \times duty factor LOW, where:$$

 f_i = input frequency in MHz

f_o = output frequency in MHz

 V_O = output voltage in V

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

 R_L = pull-up resistor in $M\Omega$

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

 $\sum (V_0^2/R_L)$ = sum of outputs

2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V

3. The given value of C_{PD} is obtained with:

 $C_L = 0$ pF and $R_L = \infty$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Quad 2-input NAND gate

74HC/HCT03

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to GND (ground = $0\ V$)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V _{CC}	DC supply voltage	-0.5	+7	V	
Vo	DC output voltage	-0.5	+7	V	
I _{IK}	DC input diode current		20	mA	for $V_I < -0.5 \text{ V}$ or $V_I > V_{CC} + 0.5 \text{ V}$
-I _{OK}	DC output diode current		20	mA	for $V_O < -0.5 \text{ V}$
-l _O	DC output sink current		25	mA	for – 0.5 V < V _O
±I _{CC} ; ±I _{GND}	DC VCC or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range; –40 to +125 °C 74HC/HCT
	plastic DIL		750	mW	above +70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above +70 °C: derate linearly with 8 mW/K

Quad 2-input NAND gate

74HC/HCT03

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see " $74HC/HCT/HCU/HCMOS\ Logic\ Family\ Specifications$ ", except that the V_{OH} values are not valid for open drain. They are replaced by I_{OZ} as given below.

Output capability: standard (open drain), excepting VOH

I_{CC} category: SSI

Voltages are referenced to GND (ground = 0 V)

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS			
SYMBOL		74HC									\ <u></u>	OTHER	
		+25		−40 to +85		-40 to +125		UNIT	V _{CC} (V)	Vı	OTHER		
		min.	typ.	max.	min.	max.	min.	max.		(-,			
l _{OZ}	HIGH level output leakage current			0.5		5.0		10.0	μΑ	2.0 to 6.0	V _{IL}	$V_O = V_{O(max)}^{(1)}$ or GND	

Note

1. The maximum operating output voltage ($V_{O(max)}$) is 6.0 V.

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
CVMDOI					UNIT	V _{CC}	WAVEFORMS				
SYMBOL		+25						-40 to +85		-40 to +125	
		min.	typ.	max.	min.	max.	min.	max.		(,	
t _{PZL} /	propagation delay		28	95		120		145		2.0	Fig.6
t _{PLZ}	nA, nB to nY		10	19		24		29	ns	4.5	
			8	16		20		25		6.0	
t _{THL}	output transition time		19	75		95		110	ns	2.0	
			7	15		19		22		4.5	Fig.6
			6	13		16		19		6.0	