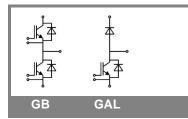


SEMITRANS[®] 2

IGBT Modules

SKM 145GB123D SKM 145GAL123D

Features


- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (10 mm) and creepage distances (20 mm)

Typical Applications

- Switching (not for linear use)
- AC inverter drives

Symbol	te Maximum Ratings		Values	Units
IGBT			Values	onits
V _{CES}	T _i = 25 °C		1200	V
I _C	$T_j = 25 \text{ °C}$ $T_i = 150 \text{ °C}$	T _{case} = 25 °C	145	A
	,	T _{case} = 80 °C	110	А
I _{CRM}	I _{CRM} =2xI _{Cnom}		200	А
V _{GES}			± 20	V
t _{psc}	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 600 \; V; \; V_{GE} \leq 20 \; V; \\ V_{CES} < 1200 \; V \end{array}$	T _j = 125 °C	10	μs
Inverse	Diode			
I _F	T _j = 150 °C	T _{case} = 25 °C	130	А
		T _{case} = 80 °C	90	А
I _{FRM}	I _{FRM} =2xI _{Fnom}		200	А
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	900	А
Freewh	eeling Diode			
I _F	T _j = 150 °C	T _{case} = 25 °C	170	A
		T _{case} = 80 °C	115	A
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	А
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	1440	А
Module				
I _{t(RMS)}			200	А
Τ _{vj}			- 40+ 150	°C
T _{stg}			- 40+ 125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics T _c			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 4 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,1	0,3	mA
V _{CE0}		T _j = 25 °C		1,4	1,6	V
		T _j = 125 °C		1,6	1,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		11	14	mΩ
		T _j = 125°C		15	19	mΩ
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V	T _j = °C _{chiplev.}		2,5	3	V
C _{ies}				6,5	8,5	nF
C _{oes}	V _{CE} = 25, V _{GE} = 0 V	f = 1 MHz		1	1,5	nF
C _{res}				0,5	0,6	nF
Q _G	V _{GE} = -8V - +20V			1000		nC
R _{Gint}	T _j = °C			5		Ω
t _{d(on)}				160	320	ns
t _r E _{on}	R _{Gon} = 6,8 Ω	V _{CC} = 600V		80	160	ns
E _{on}		I _C = 100A		16		mJ
t _{d(off)}	R _{Goff} = 6,8 Ω	T _j = 125 °C		400	520	ns
t _f		V _{GE} = -15V		70	100	ns
E _{off}				12		mJ
R _{th(j-c)}	per IGBT				0,15	K/W

25-04-2007 SEI

© by SEMIKRON

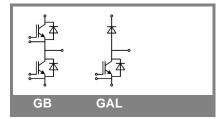
SEMITRANS[®] 2

IGBT Modules

SKM 145GB123D SKM 145GAL123D

Features

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (10 mm) and creepage distances (20 mm)


Typical Applications

- Switching (not for linear use)
- AC inverter drives

Characte						
-	Conditions		min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	I _{Fnom} = 100 A; V _{GE} = 0 V			2	2,5	V
		$T_j = 125 \ ^\circ C_{chiplev.}$ $T_j = 25 \ ^\circ C$		1,8		V
V _{F0}				1,1	1,4	V
		T _j = 125 °C				V
r _F		T _j = 25 °C		9	11	mΩ
		T _j = 125 °C T _j = 25 °C				mΩ
I _{RRM}	I _F = 100 A	T _j = 25 °C		35		А
Q _{rr}	di/dt = 1000 A/µs			5		μC
E _{rr}	$V_{GE} = 0 V; V_{CC} = 600 V$					mJ
R _{th(j-c)D}	per diode				0,36	K/W
	eling Diode					
V _F = V _{EC}	I _{Fnom} = 150 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V
		T _j = 125 °C _{chiplev.}		1,8		V
V _{F0}		$T_j = 125 \ ^\circ C_{chiplev.}$ $T_j = 25 \ ^\circ C$		1,1	1,4	V
		T _j = 125 °C				V
r _F		T _i = 25 °C		9	11	V
		T _j = 125 °C				V
IRRM	I _F = 150 A	T _i = 25 °C		55		Α
Q _{rr}		2		8		μC
E _{rr}	$V_{GE} = 0 V; V_{CC} = 600 V$					mJ
R _{th(j-c)FD}	per diode				0,3	K/W
Module						
L _{CE}					30	nH
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,75		mΩ
30 · LL		T _{case} = 125 °C		1		mΩ
R _{th(c-s)}	per module				0,05	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M5		2,5		5	Nm
w					160	g

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

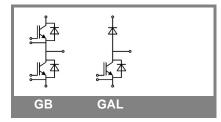
2

© by SEMIKRON

SEMITRANS[®] 2

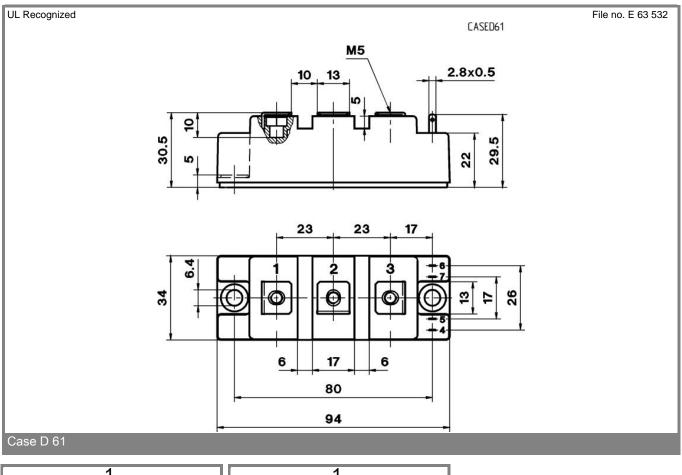
IGBT Modules

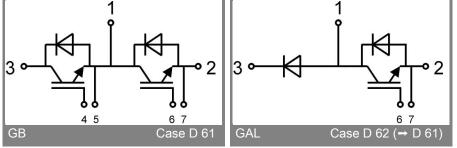
SKM 145GB123D


SKM 145GAL123D

Features

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (10 mm) and creepage distances (20 mm)


Typical Applications


- Switching (not for linear use)
- AC inverter drives

Downloaded from Elcodis.com electronic components distributor

Z _{th}			
Symbol	Conditions	Values	Units
Z R _i			
R _i	i = 1	100	mk/W
R _i	i = 2	38	mk/W
R _i	i = 3	10	mk/W
R _i	i = 4	2	mk/W
tau	i = 1	0,03	s
tau	i = 2	0,0287	s
tau	i = 3	0,0012	s
tau _i	i = 4	0,0002	s
Z R _i th(j-c)D			
R _i	i = 1	240	mk/W
R _i	i = 2	95	mk/W
R _i	i = 3	22	mk/W
R _i	i = 4	3	mk/W
tau _i	i = 1	0,054	s
tau	i = 2	0,0113	s
tau	i = 3	0,0012	s
tau _i	i = 4	0,005	s

