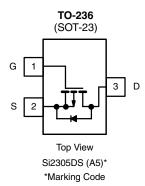


P-Channel 1.25-W, 1.8-V (G-S) MOSFET


PRODUCT SUMMARY					
V _{DS} (V)	$r_{DS(on)}(\Omega)$	I _D (A)			
- 8	0.052 at V _{GS} = - 4.5 V	± 3.5			
	0.071 at V _{GS} = - 2.5 V	± 3			
	0.108 at V _{GS} = - 1.8 V	± 2			

FEATURES

• TrenchFET® Power MOSFETs: 1.8 V Rated

RoHS'

Ordering Information: Si2305DS-T1

Si2305DS-T1-E3 (Lead (Pb)-free)

ABSOLUTE MAXIMUM RATINGS $T_A = 25$ °C, unless otherwise noted **Parameter Symbol** Limit Unit Drain-Source Voltage V_{DS} - 8 ٧ \overline{v}_{GS} Gate-Source Voltage ± 8 $T_A = 25 \, ^{\circ}C$ ± 3.5 Continuous Drain Current (T_J = 150 °C) I_D T_A = 70 °C ± 2.8 Α **Pulsed Drain Current** I_{DM} ± 12 Continuous Source Current (Diode Conduction)^{a, b} I_S - 1.6 $T_A = 25 \,^{\circ}C$ 1.25 Maximum Power Dissipation^{a, b} P_D T_A = 70 °C 8.0 T_J, T_{stg} °C Operating Junction and Storage Temperature Range - 55 to 150

THERMAL RESISTANCE RATINGS								
Parameter		Symbol	Typical	Maximum	Unit			
Manipana Ingation to Ambienti	t ≤ 5 sec	R _{thJA}		100	°C/W			
Maximum Junction-to-Ambient ^a	Steady State		130		C/VV			

Notes:

a. Surface Mounted on FR4 Board.

 $b.\ t \leq 5\ sec.$

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply.

Si2305DS

Vishay Siliconix

SPECIFICATIONS $T_J = 25$ °C, unless otherwise noted									
Parameter	Symbol	Test Conditions	Limits			Unit			
			Min	Тур	Max	Jt			
Static			,						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -10 \mu\text{A}$	- 8			V			
Gate-Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$	- 0.45		- 0.8				
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			± 100	nA			
Zero Gate Voltage Drain Current	I _{DSS} _	V _{DS} = -8 V, V _{GS} = 0 V			- 1	μΑ			
		$V_{DS} = -8 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$			- 10				
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	- 6			^			
		$V_{DS} \le -5 \text{ V}, V_{GS} = -2.5 \text{ V}$	- 3			A			
	r _{DS(on)}	V _{GS} = - 4.5 V, I _D = - 3.5 A		0.044	0.052	Ω			
Drain-Source On-Resistance ^a		V _{GS} = - 2.5 V, I _D = - 3 A		0.060	0.071				
		V _{GS} = - 1.8 V, I _D = - 2 A		0.087	0.108				
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 5 V, I _D = - 3.5 A		8.5		S			
Diode Forward Voltage	V_{SD}	I _S = - 1.6 A, V _{GS} = 0 V			- 1.2	V			
Dynamic ^b									
Total Gate Charge	Q_g			10	15	nC			
Gate-Source Charge	Q_{gs}	V_{DS} = - 4 V, V_{GS} = - 4.5 V, $I_D \cong$ - 3.5 A		2					
Gate-Drain Charge	Q_{gd}			2					
Input Capacitance	C _{iss}			1245		pF			
Output Capacitance	C _{oss}	$V_{DS} = -4 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		375					
Reverse Transfer Capacitance	C _{rss}			210					
Switching ^b									
Turn-On Time	t _{d(on)}			13	20				
	t _r	V_{DD} = - 4 V, R_L = 4 Ω		25	40	ne			
Turn-Off Time	t _{d(off)}	$I_D\cong$ - 1.0 A, V_{GEN} = - 4.5 V, R_G = 6 Ω		55	80	ns			
	t _f			19	35				

Notes:

- a. For DESIGN AID ONLY, not subject to production testing.
- b. Pulse test: PW \leq 300 $\mu s,$ duty cycle \leq 2 %.
- c. Switching time is essentially independent of operating temperature.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.