Type: 1110

Dimensions

Internal connection diagrams

Description

Single pole switch/thermal circuit breaker with push-push or push-toreset actuation (S-type TO or R-type TO CBE to EN 60934) and teasefree, trip-free, snap action mechanism. Designed for snap-in panel mounting utilising round hole or industry standard fuse-holder cut-out dimensions. Featuring an ergonomically styled two colour actuator with indicator band clearly showing the tripped/OFF position.
Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Motors, transformers, solenoids, extra low voltage systems, household and office machines, instrumentation, marine applications, mobile homes.

Ordering information

Type No.			
1110 sn M 	snap in panel mounting		
	Mounting		
	F1 panel thickness 0.8...1.6 mm (.031-.063 in)		
	F2 panel thickness 1.8... 3 mm (.071-.118 in)		
	Number of poles		
	1 1-pole protected		
	Actuator style		
	2 black push button/white indicator ring, standard		
	B black push button/white indicator ring, standard push-to-reset function		
	Other indicator ring colours are available to special order		
	Terminal design		
	P1 blade terminals A6.3-0.8 (QC .250)		
	M1 medium delay Current ratings		
	0.05...16A		
1110-F1 $12-\mathrm{P} 1 \mathrm{M} 1-0.05 \mathrm{~A}=$ ordering example			
Standard current ratings and typical internal resistance values			
Current rating (A)	t Internal	Current	Internal
	(A) resistance (Ω)	rating (A)	resistance (Ω)
0.05	442	2	0.25
0.08	173	2.5	0.19
0.1	110	3	0.12
0.2	27.8	3.5	0.09
0.3	12.4	4	0.07
0.4	7.0	5	0.05
0.5	4.5	6	0.04
0.6	3.1	7	≤ 0.02
0.7	2.3	8	≤ 0.02
0.8	1.7	10	≤ 0.02
1	1.1	12	≤ 0.02
1.2	0.71	15	≤ 0.02
1.5	0.41	16	≤ 0.02
1.8	0.38		

Technical data

For further details please see chapter: Technical Information

Voltage rating	AC 250 V ; DC 28 V (UL: AC 250 V ; DC 50 V)
Current rating	0.05...16 A
Typical life for	$\begin{aligned} & \text { AC + DC } \\ & 10,000 \text { operations at } 1 \end{aligned}$

$12 \ldots 16 \mathrm{~A} \quad 6,000$ operations at $1 \times \mathrm{I}_{\mathrm{N}}$, inductive
for actuator style B:
$0.05 \ldots 10 \mathrm{~A} 200$ operations at $2 \times \mathrm{I}_{\mathrm{N}}$, inductive

| Ambient temperature | $-20 \ldots+60^{\circ} \mathrm{C}$ | $\left(-4 \ldots+140^{\circ} \mathrm{F}\right)$ |
| :--- | :--- | :--- | :--- |
| Insulation co-ordination | rated impulse | pollution |
| (IEC 60664 and 60664 A$)$ | withstand voltage | degree |
| | 2.5 kV | 2 |
| | reinforced insulation in operating area | |

Dielectric strength
(IEC 60664 and 60664A) test voltage
operating area AC 3,000 V

Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$		
Interrupting capacity I_{cn}	$\mathrm{AC} 250 \mathrm{~V}:$	$0.05 \ldots . .16 \mathrm{~A}$	$8 \times \mathrm{I}_{\mathrm{N}}$
	$\mathrm{DC} 28 \mathrm{~V}:$	$0.05 \ldots 6 \mathrm{~A}$	$10 \times \mathrm{I}_{\mathrm{N}}$
		$7 \ldots 10 \mathrm{~A}$	200 A
		$12 \ldots 16 \mathrm{~A}$	300 A
Interrupting capacity	I_{N}	U_{N}	
(UL 1077/EN60934 PC 1)	$0.05 \ldots 6 \mathrm{~A}$	AC 250 V	$1,000 \mathrm{~A}$
	$7 \ldots 16 \mathrm{~A}$	AC 125 V	$1,000 \mathrm{~A}$
	$0.05 \ldots 16 \mathrm{~A}$	DC 50 V	$1,000 \mathrm{~A}$

Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	$30 \mathrm{~g}(11 \mathrm{~ms})$ to IEC $60068-2-27$, test Ea
Corrosion	96 hours at 5% salt mist, to IEC $60068-2-11$, test Ka
Humidity	240 hours at 95% RH to IEC $60068-2-3$, test Ca
Mass	approx. 12 g

Approvals

Authority	Voltage ratings	Current ratings
for S-type:		
UL	AC 250 V	$0.05 \ldots 6 \mathrm{~A}$
	AC 125 V	$7 \ldots .16 \mathrm{~A}$
	DC 50 V	$0.05 \ldots 16 \mathrm{~A}$
CSA	AC 250 V ; DC 50 V	$0.05 \ldots . .16 \mathrm{~A}$
VDE	AC $250 \mathrm{~V} ;$ DC 28 V	$0.05 \ldots . .10 \mathrm{~A}$

루류Tㅇ Thermal Overcurrent Circuit Breaker 1110-

Dimensions

1110-F1.. / -F2..

Panel cut out
1110-F1..-P.M1-...A
1110-F2..-P.M1-...A

insertion force $\leq 20 \mathrm{~N}$, removal force $\geq 120 \mathrm{~N}$ insertion force $\leq 40 \mathrm{~N}$, removal force $\geq 120 \mathrm{~N}$

Installation drawing

Internal connection diagram

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F}$ ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & -4 \\ & -20 \end{aligned}$	$\begin{aligned} & +14 \\ & -10 \end{aligned}$	$\begin{aligned} & +32 \\ & 0 \end{aligned}$	$\begin{aligned} & +73.4 \\ & +23 \end{aligned}$	$\begin{aligned} & +104 \\ & +40 \end{aligned}$	$\begin{aligned} & +122 \\ & +50 \end{aligned}$	$\begin{aligned} & +140 \\ & +60 \end{aligned}$
Derating factors	0.76	0.84	0.92	1	1.08	1.16	1.24

Accessories - Water splash covers (transparent)

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

