Improved Quad CMOS Analog Switches

DESCRIPTION

The DG201B/202B analog switches are highly improved versions of the industry-standard DG201A/202. These devices are fabricated in Vishay Siliconix' proprietary silicon gate CMOS process, resulting in lower on-resistance, lower leakage, higher speed, and lower power consumption.

These quad single-pole single-throw switches are designed for a wide variety of applications in telecommunications, instrumentation, process control, computer peripherals, etc. An improved charge injection compensation design minimizes switching transients. The DG201B and DG202B can handle up to $\pm 22 \mathrm{~V}$ input signals, and have an improved continuous current rating of 30 mA . An epitaxial layer prevents latchup.

All devices feature true bi-directional performance in the on condition, and will block signals to the supply voltages in the off condition.

The DG201B is a normally closed switch and the DG202B is a normally open switch. (See Truth Table.)

FEATURES

- ± 22 V Supply Voltage Rating
- TTL and CMOS Compatible Logic
- Low On-Resistance - rons(on): 45Ω
- Low Leakage - $\mathrm{I}_{\mathrm{D} \text { (on): }}: 20 \mathrm{pA}$
- Single Supply Operation Possible
- Extended Temperature Range
- Fast Switching - $\mathrm{t}_{\mathrm{ON}}: 120 \mathrm{~ns}$
- Low Glitching - Q: 1 pC

BENEFITS

- Wide Analog Signal Range
- Simple Logic Interface
- Higher Accuracy
- Minimum Transients
- Reduced Power Consumption
- Superior to DG201A/202
- Space Savings (TSSOP)

APPLICATIONS

- Industrial Instrumentation
- Test Equipment
- Communications Systems
- Disk Drives
- Computer Peripherals
- Portable Instruments
- Sample-and-Hold Circuits

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	DG201B	DG202B
0	ON	OFF
1	OFF	ON

Logic "0" $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

* Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay Siliconix

ORDERING INFORMATION		
Temp Range	Package	Part Number
- 40 to $85^{\circ} \mathrm{C}$	16-Pin Plastic DIP	$\begin{gathered} \text { DG201BDJ } \\ \text { DG201BDJ-E3 } \end{gathered}$
		$\begin{gathered} \text { DG202BDJ } \\ \text { DG202BDJ-E3 } \end{gathered}$
	16-Pin Narrow SOIC	$\begin{gathered} \hline \text { DG201BDY } \\ \text { DG201BDY-E3 } \\ \text { DG201BDY-T1 } \\ \text { DG201BDY-T1-E3 } \end{gathered}$
		$\begin{gathered} \text { DG202BDY } \\ \text { DG202BDY-E3 } \\ \text { DG202BDY-T1 } \\ \text { DG202BDY-T1-E3 } \end{gathered}$
	16-Pin TSSOP	$\begin{gathered} \text { DG201BDQ } \\ \text { DG201BDQ-E3 } \\ \text { DG201BDQ-T1 } \\ \text { DG201BDQ-T1-E3 } \end{gathered}$
		$\begin{gathered} \text { DG202BDQ } \\ \text { DG202BDQ-E3 } \\ \text { DG202BDQ-T1 } \\ \text { DG202BDQ-T1-E3 } \end{gathered}$

ABSOLUTE MAXIMUM RATINGS			
Parameter		Limit	Unit
Voltages Referenced, V+ to V-		44	V
GND		25	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		$(\mathrm{V}-)-2 \text { to }(\mathrm{V}+)+2$ or 30 mA , whichever occurs first	
Current, Any Terminal		30	mA
Peak Current S or D (Pulsed at $1 \mathrm{~ms}, 10$ \% duty cycle max)		100	
Storage Temperature	(AK, DK Suffix)	- 65 to 150	${ }^{\circ} \mathrm{C}$
	(DJ, DY, DQ Suffix)	- 65 to 125	
Power Dissipation (Package) ${ }^{\text {b }}$	16-Pin Plastic DIP ${ }^{\text {c }}$	470	mW
	16-Pin Narrow SOIC and TSSOP ${ }^{\text {d }}$	640	
	16-Pin CerDIP ${ }^{\text {e }}$	900	

Notes:
a. Signals on S_{X}, D_{X}, or $I N_{X}$ exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
d. Derate $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
e. Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

SCHEMATIC DIAGRAM (TYPICAL CHANNEL)

Figure 1.

SPECIFICATIONS ${ }^{\text {a }}$									
Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{f}} \end{gathered}$	Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	$\begin{array}{\|c\|} \hline \text { A Suffix } \\ -55 \text { to } 125^{\circ} \mathrm{C} \\ \hline \end{array}$		$\begin{gathered} \text { D Suffix } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit
					Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	Vanalog		Full		-15	15	-15	15	V
Drain-Source On-Resistance	${ }^{r_{\text {DS (on) }}}$	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \end{aligned}$	45		$\begin{gathered} 85 \\ 100 \end{gathered}$		$\begin{gathered} \hline 85 \\ 100 \end{gathered}$	Ω
$\mathrm{r}_{\text {DS(on) }}$ Match	${ }^{\text {r }} \mathrm{r}_{\mathrm{DS} \text { (on }}$		Room	2					
Source Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\mathrm{V}_{S}= \pm 14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 14 \mathrm{~V}$	$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	± 0.01	$\begin{aligned} & -0.5 \\ & -20 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	$\begin{gathered} -0.5 \\ -5 \end{gathered}$	$\begin{gathered} 0.5 \\ 5 \end{gathered}$	
Drain Off Leakage Current	$\mathrm{I}_{\mathrm{D} \text { (off) }}$	$\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 14 \mathrm{~V}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	± 0.01	$\begin{aligned} & \hline-0.5 \\ & -20 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	$\begin{gathered} \hline-0.5 \\ -5 \end{gathered}$	$\begin{gathered} 0.5 \\ 5 \end{gathered}$	nA
Drain On Leakage Current	$I_{\text {(on) }}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	± 0.02	$\begin{aligned} & -0.5 \\ & -40 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 40 \end{aligned}$	$\begin{gathered} \hline-0.5 \\ -10 \end{gathered}$	$\begin{gathered} 0.5 \\ 10 \end{gathered}$	
Digital Control									
Input Voltage High	$\mathrm{V}_{\text {INH }}$		Full		2.4		2.4		
Input Voltage Low	$\mathrm{V}_{\text {INL }}$		Full			0.8		0.8	
Input Current	$\mathrm{l}_{\mathrm{INH}}$ or $\mathrm{l}_{\mathrm{INL}}$	$\mathrm{V}_{\text {INH }}$ or $\mathrm{V}_{\text {INL }}$	Full		-1	1	-1	1	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{C}_{\text {IN }}$		Room	5					pF
Dynamic Characteristics									
Turn-On Time	t_{on}	$\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$	$\begin{array}{\|c} \hline \text { Room } \\ \text { Full } \end{array}$	120		300		300	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$	See Switching Time Test Circuit	$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \end{aligned}$	65		200		200	
Charge Injection	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{~V}_{\mathrm{g}}=0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{g}}=0 \Omega \end{gathered}$	Room	1					pC
Source-Off Capacitance	$\mathrm{C}_{\mathrm{S}_{\text {(off) }}}$		Room	5					
Drain-Off Capacitance	$\mathrm{C}_{\mathrm{D} \text { (off) }}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Room	5					pF
Channel On Capacitance	$\mathrm{C}_{\mathrm{D} \text { (on) }}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Room	16					
Off Isolation	OIRR		Room	90					
Channel-to-Channel Crosstalk	$\mathrm{X}_{\text {TALK }}$	$V_{S}=1 V_{R M S}, f=100 \mathrm{kHz}$	Room	95					dB
Power Supply									
Positive Supply Current	I+		Room Full			$\begin{gathered} \hline 50 \\ 100 \\ \hline \end{gathered}$		$\begin{gathered} \hline 50 \\ 100 \\ \hline \end{gathered}$	
Negative Supply Current	I-	$\mathrm{V}_{\mathrm{IN}}=0$ or 5 V	$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$		$\begin{aligned} & -1 \\ & -5 \end{aligned}$		$\begin{aligned} & -1 \\ & -5 \end{aligned}$		$\mu \mathrm{A}$
Power Supply Range for Continuous Operation	V_{OP}		Full		± 4.5	± 22	± 4.5	± 22	V

SPECIFICATIONS FOR SINGLE SUPPLYª

Parameter	Symbol	Test Conditions Unless Specified$\begin{aligned} & \mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{f} \end{aligned}$	Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	$\begin{gathered} \text { A Suffix } \\ -55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { D Suffix } \\ -40 \text { to } 85^{\circ} \mathrm{C} \\ \hline \end{gathered}$		Unit
					Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\mathrm{e}}$	$\mathrm{V}_{\text {ANALOG }}$		Full		0	12	0	12	V
Drain-Source On-Resistance	$r_{\text {DS(on) }}$	$\mathrm{V}_{\mathrm{D}}=3 \mathrm{~V}, 8 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	Room Full	90		$\begin{aligned} & 160 \\ & 200 \end{aligned}$		$\begin{aligned} & 160 \\ & 200 \end{aligned}$	Ω
Dynamic Characteristics									
Turn-On Time	t_{ON}	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$	Room	120		300		300	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$	See Switching Time Test Circuit	Room	60		200		200	ns
Charge Injection	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\text {gen }}=6 \mathrm{~V} \\ \mathrm{R}_{\text {gen }}=0 \Omega \end{gathered}$	Room	4					pC
Power Supply									
Positive Supply Current	I+	$V_{\text {IN }}=0$ or 5 V	Room Full			$\begin{gathered} 50 \\ 100 \end{gathered}$		$\begin{gathered} 50 \\ 100 \end{gathered}$	A
Negative Supply Current	I-	=0, 5 V	Room Full		$\begin{aligned} & -1 \\ & -5 \end{aligned}$		$\begin{aligned} & -1 \\ & -5 \end{aligned}$		$\mu \mathrm{A}$
Power Supply Range for Continuous Operation	V_{OP}		Full		+ 4.5	+ 25	+ 4.5	+ 25	V

Notes:
a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

[^0]TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

$r_{D S(o n)}$ vs. V_{D} and Power Supply Voltages

$r_{D S(o n)}$ vs. V_{D} and Single Power Supply Voltages

$r_{\text {DS(on) }}$ vs. V_{D} and Temperature

Input Switching Threshold vs. Supply Voltage

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Switching Time vs. Single Supply Voltage

V+, V- Positive and Negative Supplies (V)
Switching Time vs. Power Supply Voltage

Supply Current vs. Switching Frequency

TEST CIRCUITS

Figure 2. Switching Time

Figure 3. Off Isolation

$\Delta \mathrm{V}_{\mathrm{O}}=$ measured voltage error due to charge injection The charge injection in coulombs is $\mathrm{Q}=\mathrm{C}_{\mathrm{L}} \times \Delta \mathrm{V}_{\mathrm{O}}$

Figure 5. Charge Injection

APPLICATIONS

Figure 6. Sample-and-Hold

Figure 7. Active Low Pass Filter with Digitally Selected Break Frequency

APPLICATIONS

Figure 8. A Precision Amplifier with Digitally Programable Input and Gains

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

[^0]: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

