MICROCHIP MCP1827/MCP1827S

1.5A, Low Voltage, Low Quiescent Current LDO Regulator

Features

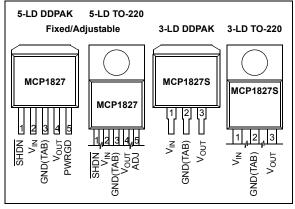
- 1.5A Output Current Capability
- Input Operating Voltage Range: 2.3V to 6.0V
- Adjustable Output Voltage Range: 0.8V to 5.0V (MCP1827 only)
- Standard Fixed Output Voltages:
 - 0.8V, 1.2V, 1.8V, 2.5V, 3.0V, 3.3V, 5.0V
- Other Fixed Output Voltage Options Available
 Upon Request
- Low Dropout Voltage: 330 mV Typical at 1.5A
- Typical Output Voltage Tolerance: 0.5%
- Stable with 1.0 µF Ceramic Output Capacitor
- · Fast response to Load Transients
- Low Supply Current: 120 µA (typ)
- Low Shutdown Supply Current: 0.1 µA (typ) (MCP1827 only)
- Fixed Delay on Power Good Output (MCP1827 only)
- Short Circuit Current Limiting and Overtemperature Protection
- 5-Lead Plastic DDPAK, 5-Lead TO-220 Package Options (MCP1827)
- 3-Lead Plastic DDPAK, 3-Lead TO-220 Package Options (MCP1827S)

Applications

- High-Speed Driver Chipset Power
- Networking Backplane Cards
- Notebook Computers
- · Network Interface Cards
- Palmtop Computers
- · 2.5V to 1.XV Regulators

Description

The MCP1827/MCP1827S is a 1.5A Low Dropout (LDO) linear regulator that provides high current and low output voltages. The MCP1827 comes in a fixed or adjustable output voltage version, with an output voltage range of 0.8V to 5.0V. The 1.5A output current capability, combined with the low output voltage capability, make the MCP1827 a good choice for new sub-1.8V output voltage LDO applications that have high current demands. The MCP1827S is a 3-pin fixed voltage version. The MCP1827/MCP1827S is based upon the MCP1727 LDO device.


The MCP1827/MCP1827S is stable using ceramic output capacitors that inherently provide lower output noise and reduce the size and cost of the entire regulator solution. Only 1 μ F of output capacitance is needed to stabilize the LDO.

Using CMOS construction, the quiescent current consumed by the MCP1827/MCP1827S is typically less than 120 μ A over the entire input voltage range, making it attractive for portable computing applications that demand high output <u>current</u>. The MCP1827 versions have a Shutdown (SHDN) pin. When shut down, the quiescent current is reduced to less than 0.1 μ A.

On the MCP1827 fixed output versions the scaled-down output voltage is internally monitored and a power good (PWRGD) output is provided when the output is within 92% of regulation (typical). The PWRGD delay is internally fixed at 200 µs (typical).

The overtemperature and short circuit current-limiting provide additional protection for the LDO during system fault conditions.

Package Types

© 2007 Microchip Technology Inc.

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V _{IN}
Maximum Voltage on Any Pin (GND – 0.3V) to $(V_{DD}$ + 0.3)V
Maximum Power Dissipation Internally-Limited (Note 6)
Output Short Circuit DurationContinuous
Storage temperature65°C to +150°C
Maximum Junction Temperature, T _J +150°C
ESD protection on all pins (HBM/MM) \geq 2 kV; \geq 200V

+ Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

AC/DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$ **Note 1**, V_R =1.8V for Adjustable Output, I_{OUT} = 1 mA, $C_{IN} = C_{OUT}$ = 4.7 µF (X7R Ceramic), T_A = +25°C. **Boldface** type applies for junction temperatures, T_J (**Note 7**) of -40°C to +125°C

Parameters	Sym	Min	Тур	Max	Units	Conditions
Input Operating Voltage	V _{IN}	2.3		6.0	V	Note 1
Input Quiescent Current	Ι _q	_	120	220	μΑ	I _L = 0 mA, V _{IN} = Note 1 , V _{OUT} = 0.8V to 5.0V
Input Quiescent Current for SHDN Mode	ISHDN	_	0.1	3	μΑ	SHDN = GND
Maximum Output Current	I _{OUT}	1.5	—	_	A	V _{IN} = 2.3V to 6.0V V _R = 0.8V to 5.0V, Note 1
Line Regulation	ΔV _{OUT} / (V _{OUT} x ΔV _{IN})	_	0.05	0.16	%/V	(Note 1) \leq V _{IN} \leq 6V
Load Regulation	$\Delta V_{OUT}/V_{OUT}$	-1.0	±0.5	1.0	%	I _{OUT} = 1 mA to 1.5A, V _{IN} = Note 1 , (Note 4)
Output Short Circuit Current	I _{OUT_SC}	_	2.2	_	A	V _{IN} = Note 1 , R _{LOAD} < 0.1Ω, Peak Current
Adjust Pin Characteristics (Adj	ustable Output Or	ıly)				
Adjust Pin Reference Voltage	V _{ADJ}	0.402	0.410	0.418	V	V_{IN} = 2.3V to V_{IN} = 6.0V, I_{OUT} = 1 mA
Adjust Pin Leakage Current	I _{ADJ}	-10	±0.01	+10	nA	V_{IN} = 6.0V, V_{ADJ} = 0V to 6V
Adjust Temperature Coefficient	TCV _{OUT}	_	40		ppm/°C	Note 3

Note 1:

- The minimum V_{IN} must meet two conditions: $V_{IN} \ge 2.3V$ and $V_{IN} \ge V_{OUT(MAX)} + V_{DROPOUT(MAX)}$. V_R is the nominal regulator output voltage for the fixed cases. V_R = 1.2V, 1.8V, etc. V_R is the desired set point output 2: voltage for the adjustable cases. $V_R = V_{ADJ} * ((R_1/R_2)+1)$. Figure 4-1.
- TCV_{OUT} = (V_{OUT-HIGH} V_{OUT-LOW}) *10⁶ / (V_R * Δ Temperature). V_{OUT-HIGH} is the highest voltage measured over the 3: temperature range. V_{OUT-LOW} is the lowest voltage measured over the temperature range.

4: Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested over a load range from 1 mA to the maximum specified output current.

5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value that was measured with an input voltage of $V_{IN} = V_{OUTMAX} + V_{DROPOUT(MAX)}$

6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air. (i.e., T_A , T_J , θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above 150°C can impact device reliability.

7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant.

DS22001C-page 6

AC/DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$ Note 1, V_R =1.8V for Adjustable Output, $I_{OUT} = 1 \text{ mA}$, $C_{IN} = C_{OUT} = 4.7 \mu F$ (X7R Ceramic), $T_A = +25^{\circ}C$. **Boldface** type applies for junction temperatures, T_J (Note 7) of -40°C to +125°C

Parameters	Sym	Min	Тур	Max	Units	Conditions
Voltage Regulation	V _{OUT}	V _R - 2.5%	V _R ±0.5%	V _R + 2.5%	V	Note 2
Dropout Characteristics						
Dropout Voltage	V _{IN} -V _{OUT}	—	330	600	mV	Note 5, I _{OUT} = 1.5A, V _{IN(MIN)} = 2.3V
Power Good Characteristics						
PWRGD Input Voltage Operat-	V _{PWRGD_VIN}	1.0		6.0	V	T _A = +25°C
ing Range		1.2	—	6.0		$T_A = -40^{\circ}C$ to $+125^{\circ}C$
						For V _{IN} < 2.3V, I _{SINK} = 100 μ A
PWRGD Threshold Voltage	V _{PWRGD_TH}				%V _{OUT}	Falling Edge
(Referenced to V _{OUT})		89	92	95		V_{OUT} < 2.5V Fixed, V_{OUT} = Adj.
		90	92	94		V _{OUT} >= 2.5V Fixed
PWRGD Threshold Hysteresis	V _{PWRGD_HYS}	1.0	2.0	3.0	%V _{OUT}	
PWRGD Output Voltage Low	V _{PWRGD_L}	_	0.2	0.4	V	I _{PWRGD SINK} = 1.2 mA, ADJ = 0V
PWRGD Leakage	P _{WRGD_LK}	—	1	_	nA	$V_{PWRGD} = V_{IN} = 6.0V$
PWRGD Time Delay	T _{PG}	_	200		μs	Rising Edge R _{PULLUP} = 10 kΩ
Detect Threshold to PWRGD Active Time Delay	T _{VDET-PWRGD}	—	200	_	μs	V _{ADJ} or V _{OUT} = V _{PWRGD_TH} + 20 mV to V _{PWRGD_TH} - 20 mV
Shutdown Input						
Logic High Input	V _{SHDN-HIGH}	45			%V _{IN}	V _{IN} = 2.3V to 6.0V
Logic Low Input	V _{SHDN-LOW}			15	%V _{IN}	V _{IN} = 2.3V to 6.0V
SHDN Input Leakage Current	SHDN _{ILK}	-0.1	±0.001	+0.1	μA	V _{IN} = 6V, SHDN =V _{IN} , SHDN = GND
AC Performance						
Output Delay From SHDN	T _{OR}		100		μs	$\overline{\text{SHDN}}$ = GND to V _{IN} V _{OUT} = GND to 95% V _R
Output Noise	e _N	_	2.0	_	µV/√Hz	I_{OUT} = 200 mA, f = 1 kHz, C _{OUT} = 10 µF (X7R Ceramic), V _{OUT} = 2.5V

 $\label{eq:VIN} \mbox{Note} \quad \mbox{1:} \quad \mbox{The minimum } V_{\mbox{IN}} \mbox{ must meet two conditions: } V_{\mbox{IN}} \geq 2.3 \mbox{V and } V_{\mbox{IN}} \geq V_{\mbox{OUT}(\mbox{MAX})} + V_{\mbox{DROPOUT}(\mbox{MAX})}.$

2: V_R is the nominal regulator output voltage for the fixed cases. $V_R = 1.2V$, 1.8V, etc. V_R is the desired set point output voltage for the adjustable cases. $V_R = V_{ADJ *} ((R_1/R_2)+1)$. Figure 4-1.

3: TCV_{OUT} = (V_{OUT-HIGH} – V_{OUT-LOW}) *10⁶ / (V_R * Δ Temperature). V_{OUT-HIGH} is the highest voltage measured over the temperature range. V_{OUT-LOW} is the lowest voltage measured over the temperature range.

4: Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested over a load range from 1 mA to the maximum specified output current.

5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value that was measured with an input voltage of $V_{IN} = V_{OUTMAX} + V_{DROPOUT(MAX)}$.

6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air. (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above 150°C can impact device reliability.

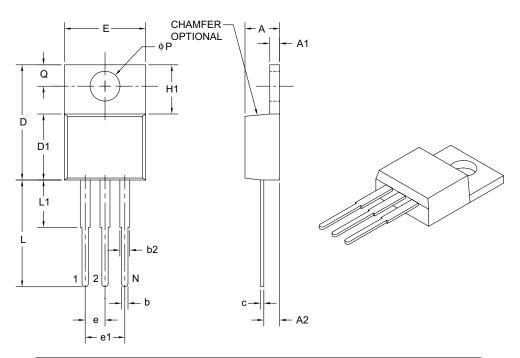
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant.

AC/DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$ **Note 1**, V_R =1.8V for Adjustable Output, $I_{OUT} = 1 \text{ mA}$, $C_{IN} = C_{OUT} = 4.7 \mu F$ (X7R Ceramic), $T_A = +25^{\circ}C$. **Boldface** type applies for junction temperatures, T_J (**Note 7**) of -40°C to +125°C

Parameters	Sym	Min	Тур	Max	Units	Conditions
Power Supply Ripple Rejection Ratio	PSRR		60		dB	f = 100 Hz, C_{OUT} = 10 µF, I _{OUT} = 10 mA, V _{INAC} = 30 mV pk-pk, C _{IN} = 0 µF
Thermal Shutdown Temperature	T _{SD}		150		°C	I _{OUT} = 100 μA, V _{OUT} = 1.8V, V _{IN} = 2.8V
Thermal Shutdown Hysteresis	ΔT_{SD}	_	10	_	°C	I _{OUT} = 100 μA, V _{OUT} = 1.8V, V _{IN} = 2.8V

The minimum V_{IN} must meet two conditions: V_{IN} \geq 2.3V and V_{IN} \geq V_{OUT(MAX)} + V_{DROPOUT(MAX)}. Note 1:


 V_R is the nominal regulator output voltage for the fixed cases. $V_R = 1.2V$, 1.8V, etc. V_R is the desired set point output voltage for the adjustable cases. $V_R = V_{ADJ} * ((R_1/R_2)+1)$. Figure 4-1. TCV_{OUT} = (V_{OUT-HIGH} - V_{OUT-LOW}) *10⁶ / (V_R * Δ Temperature). V_{OUT-HIGH} is the highest voltage measured over the 2:

- 3: temperature range. V_{OUT-LOW} is the lowest voltage measured over the temperature range.
- 4: Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested over a load range from 1 mA to the maximum specified output current.
- Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its 5: nominal value that was measured with an input voltage of VIN = VOUTMAX + VDROPOUT(MAX).
- The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction 6: temperature and the thermal resistance from junction to air. (i.e., T_A , T_J , θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above 150°C can impact device reliability.
- 7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant.

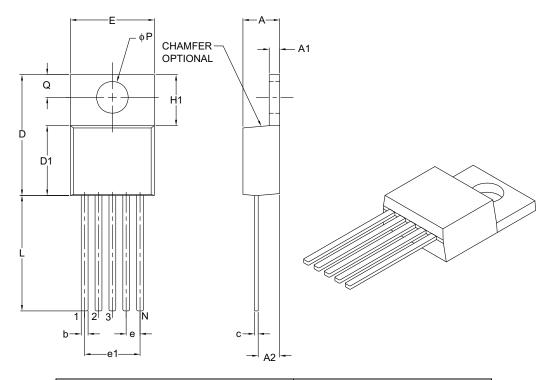
Electrical Specifications: Unless otherwise indicated, all limits apply for V _{IN} = 2.3V to 6.0V.						
Parameters	Sym	Min	Тур	Max	Units	Conditions
Temperature Ranges						
Operating Junction Temperature Range	Τ _J	-40	—	+125	°C	Steady State
Maximum Junction Temperature	ТJ	—	—	+150	°C	Transient
Storage Temperature Range	Τ _Α	-65	—	+150	°C	
Thermal Package Resistances						
Thermal Resistance, 5LD DDPAK	θ_{JA}	_	31.2	_	°C/W	4-Layer JC51 Standard Board
Thermal Resistance, 3LD DDPAK	θ_{JA}	_	31.4	_	°C/W	4-Layer JC51 Standard Board
Thermal Resistance, 5LD TO-220	θ_{JA}		29.3	_	°C/W	4-Layer JC51 Standard Board
Thermal Resistance, 3LD TO-220	θ_{JA}	_	29.4		°C/W	4-Layer JC51 Standard Board

TEMPERATURE SPECIFICATIONS

3-Lead Plastic Transistor Outline (AB) [TO-220]

	Units	INCHES			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		3		
Pitch	е		.100 BSC		
Overall Pin Pitch	e1		.200 BSC		
Overall Height	А	.140	-	.190	
Tab Thickness	A1	.020	-	.055	
Base to Lead	A2	.080	-	.115	
Overall Width	E	.357	-	.420	
Mounting Hole Center	Q	.100	-	.120	
Overall Length	D	.560	-	.650	
Molded Package Length	D1	.330	-	.355	
Tab Length	H1	.230	-	.270	
Mounting Hole Diameter	φP	.139	-	.156	
Lead Length	L	.500	-	.580	
Lead Shoulder	L1	-	-	.250	
Lead Thickness	С	.012	-	.024	
Lead Width	b	.015	.027	.040	
Shoulder Width	b2	.045	.057	.070	

Notes:


1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.

2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-034B

5-Lead Plastic Transistor Outline (AT) [TO-220]

	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		5	
Pitch	e	.067 BSC		
Overall Pin Pitch	e1		.268 BSC	
Overall Height	A	.140	-	.190
Overall Width	E	.380	-	.420
Overall Length	D	.560	-	.650
Molded Package Length	D1	.330	-	.355
Tab Length	H1	.204	-	.293
Tab Thickness	A1	.020	-	.055
Mounting Hole Center	Q	.100	-	.120
Mounting Hole Diameter	φP	.139	-	.156
Lead Length	L	.482	-	.590
Base to Bottom of Lead	A2	.080	-	.115
Lead Thickness	С	.012	-	.025
Lead Width	b	.015	.027	.040

Notes:

1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.

2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-036B

MCP1827/MCP1827S

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. XX	x x x x xx	Examples:			
Device Output Fea	Feature Tolerance Temp. Package	a) MCP1827-0802E/AT: 0.8V LDO Regulator 5LD TO-220			
	e Code	b) MCP1827-1002E/ET: 1.0V LDO Regulator 5LD DDPAK			
Device:	MCP1827: 1.5A Low Dropout Regulator MCP1827T: 1.5A Low Dropout Regulator Tape and Reel MCP1827S: 1.5A Low Dropout Regulator	c) MCP1827-1202E/AT: 1.2V LDO Regulator 5LD TO-220			
		d) MCP1827-1802E/AT: 1.8V LDO Regulator 5LD TO-220			
	MCP1827ST: 1.5A Low Dropout Regulator Tape and Reel	e) MCP1827-2502E/ET: 2.5V LDO Regulator 5LD DDPAK			
Output Voltage *:	08 = 0.8V "Standard"	f) MCP1827-3002E/ET: 3.0V LDO Regulator 5LD DDPAK			
	12 = 1.2V "Standard" 18 = 1.8V "Standard" 25 = 2.5V "Standard"	g) MCP1827-3302E/AT 3.3V LDO Regulator 5LD TO-220			
	30 = 3.0V "Standard" 33 = 3.3V "Standard"	h) MCP1827-5002E/ET: 5.0V LDO Regulator 5LD DDPAK			
	50 = 5.0V "Standard" *Contact factory for other output voltage options	i) MCP1827-ADJE/AT: ADJ LDO Regulator 5LD TO-220			
Extra Feature Code:	0 = Fixed	a) MCP1827S-0802E/EB:0.8V LDO Regulator 3LD DDPAK			
Tolerance:	2 = 2.0% (Standard)	b) MCP1827S-0802E/AB:0.8V LDO Regulator 3LD TO-220			
Temperature:	$E = -40^{\circ}C \text{ to } +125^{\circ}C$	c) MCP1827S-1002E/EB:1.0V LDO Regulator 3LD DDPAK			
Package Type:	AB = Plastic Transistor Outline, TO-220, 3-lead AT = Plastic Transistor Outline, TO-220, 5-lead	d) MCP1827S-1202E/AB 1.2V LDO Regulator 3LD TO-220			
	EB = Plastic, DDPAK, 3-lead ET = Plastic, DDPAK, 5-lead	e) MCP1827S-1802E/EB 1.8V LDO Regulator 3LD DDPAK			
		f) MCP1827S-2502E/EB 2.5V LDO Regulator 3LD DDPAK			
		g) MCP1827S-2502E/EB 3.0V LDO Regulator 3LD DDPAK			
		h) MCP1827S-3302E/AB 3.3V LDO Regulator 3LD TO-220			
		i) MCP1827S-5002E/EB 5.0V LDO Regulator 3LD DDPAK			
		j) MCP1827S-ADJE/AB ADJ LDO Regulator 3LD TO-220			

© 2007 Microchip Technology Inc.