16-Ch/Dual 8-Ch High-Performance CMOS Analog Multiplexers

DESCRIPTION

The DG406 is a 16-channel single-ended analog multiplexer designed to connect one of sixteen inputs to a common output as determined by a 4-bit binary address. The DG407 selects one of eight differential inputs to a common differential output. Break-before-make switching action protects against momentary shorting of inputs.
An on channel conducts current equally well in both directions. In the off state each channel blocks voltages up to the power supply rails. An enable (EN) function allows the user to reset the multiplexer/demultiplexer to all switches off for stacking several devices. All control inputs, address (A_{x}) and enable (EN) are TTL compatible over the full specified operating temperature range.
Applications for the DG406/407 include high speed data acquisition, audio signal switching and routing, ATE systems, and avionics. High performance and low power dissipation make them ideal for battery operated and remote instrumentation applications. For additional application information order Faxback document numbers 70601 and 70604.

Designed in the 44 V silicon-gate CMOS process, the absolute maximum voltage rating is extended to 44 volts, allowing operation with $\pm 20 \mathrm{~V}$ supplies. Additionally single (12 V) supply operation is allowed. An epitaxial layer prevents latchup
For applications information please request FaxBack documents 70601 and 70604.

FEATURES

- Low On-Resistance - $r_{\text {DS(on) }}: 50 \Omega$
- Low Charge Injection - Q: 15 pC
- Fast Transition Time - t trans: 200 ns
- Low Power: 0.2 mW
- Single Supply Capability
- 44 V Supply Max Rating

BENEFITS

- Higher Accuracy
- Reduced Glitching
- Improved Data Throughput
- Reduced Power Consumption
- Increased Ruggedness
- Wide Supply Ranges: $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$

APPLICATIONS

- Data Acquisition Systems
- Audio Signal Routing
- Medical Instrumentation
- ATE Systems
- Battery Powered Systems
- High-Rel Systems
- Single Supply Systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

DG406

DG407
Dual-In-Line and SOIC Wide-Body

* Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay Siliconix

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE - DG406

$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{E N}$	On Switch
X	X	X	X	0	None
0	0	0	0	1	1
0	0	0	1	1	2
0	0	1	0	1	3
0	0	1	1	1	4
0	1	0	0	1	5
0	1	0	1	1	6
0	1	1	0	1	7
0	1	1	1	1	8
1	0	0	0	1	9
1	0	0	1	1	10
1	0	1	0	1	11
1	0	1	1	1	12
1	1	0	0	1	13
1	1	0	1	1	14
1	1	1	0	1	15
1	1	1	1	1	16

DG407

TRUTH TABLE - DG407

$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{E N}$	On Switch Pair
X	X	X	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

Logic "0" $=\mathrm{V}_{\mathrm{AL}} \leq 0.8 \mathrm{~V}$
Logic "1" $=\mathrm{V}_{\mathrm{AH}} \geq 2.4 \mathrm{~V}$
$X=$ Do not Care

ORDERING INFORMATION - DG406		
Temp Range	Package	Part Number
-40 to $85^{\circ} \mathrm{C}$	28 -Pin Plastic DIP	DG406DJ DG406DJ-E3
	28 -Pin PLCC	DG406DN DG406DN-T1-E3
	$28-$ Pin Widebody SOIC	DG406DW DG406DW-E3

ORDERING INFORMATION - DG407		
Temp Range	Package	Part Number
-40 to $85^{\circ} \mathrm{C}$	28 -Pin Plastic DIP	DG407DJ DG407DJ-E3
	28 -Pin PLCC	DG407DN DG407DN-T1-E3
	$28-$ Pin Widebody SOIC	DG407DW DG407DW-E3

ABSOLUTE MAXIMUM RATINGS

Parameter		Limit	Unit
Voltages Referenced to V-	V+	44	V
	GND	25	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		$(\mathrm{V}-)-2 \mathrm{~V} \text { to }(\mathrm{V}+)+2 \mathrm{~V}$ or 20 mA , whichever occurs first	
Current (Any Terminal)		30	mA
Peak Current, S or D (Pulsed at 1 ms, 10 \% Duty Cycle Max)		100	
Storage Temperature	(AK, AZ Suffix)	- 65 to 150	${ }^{\circ} \mathrm{C}$
	(DJ, DN Suffix)	- 65 to 125	
Power Dissipation (Package) ${ }^{\text {b }}$	28-Pin Plastic DIP ${ }^{\text {b }}$	625	mW
	28-Pin CerDIP ${ }^{\text {d }}$	1.2	W
	28-Pin Plastic PLCC ${ }^{\text {c }}$	450	mW
	LCC-28 ${ }^{\text {e }}$	1.35	W
	28-Pin Widebody SOIC	450	mW

Notes:
a. Signals on SX, DX or INX exceeding V+ or V-will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads soldered or welded to PC board.
c. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
d. Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
e. Derate $13.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

Vishay Siliconix

SPECIFICATIONS ${ }^{\text {a }}$											
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}^{\mathrm{f}} \end{gathered}$		Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	A Suffix-55 to $125^{\circ} \mathrm{C}$		$\begin{gathered} \text { D Suffix } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit	
				Min ${ }^{\text {d }}$		Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$			
Analog Switch											
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$				Full		-15	15	-15	15	V
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS(on) }}$	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=$ Sequence Each S	$\begin{aligned} & 0 \mathrm{~mA} \\ & \text { tch On } \end{aligned}$	Room Full	50		$\begin{aligned} & 100 \\ & 125 \end{aligned}$		$\begin{aligned} & 100 \\ & 125 \end{aligned}$	Ω	
$\mathrm{r}_{\text {DS(on) }}$ Matching Between Channels ${ }^{\text {g }}$	$\Delta r_{\text {DS(on) }}$	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$		Room	5					\%	
Source Off Leakage Current	$\mathrm{I}_{\text {S(off) }}$	$\begin{gathered} V_{E N}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} \end{gathered}$		Room Full	0.01	$\begin{aligned} & \hline-0.5 \\ & -50 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 50 \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.5 \\ -5 \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ 5 \end{gathered}$	nA	
Drain Off Leakage Current	$I_{\text {(off) }}$		DG406	Room Full	0.04	$\begin{gathered} \hline-1 \\ -200 \end{gathered}$	$\begin{gathered} 1 \\ 200 \\ \hline \end{gathered}$	$\begin{gathered} \hline-1 \\ -40 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1 \\ 40 \end{gathered}$		
			DG407	$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	0.04	$\begin{gathered} \hline-1 \\ -100 \end{gathered}$	$\begin{gathered} \hline 1 \\ 100 \end{gathered}$	$\begin{gathered} \hline-1 \\ -20 \end{gathered}$	$\begin{gathered} 1 \\ 20 \end{gathered}$		
Drain On Leakage Current	$I_{\text {(on) }}$	$V_{S}=V_{D}= \pm 10$ Sequence Each Switch On	DG406	$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \end{aligned}$	0.04	$\begin{gathered} \hline-1 \\ -200 \end{gathered}$	$\begin{gathered} 1 \\ 200 \end{gathered}$	$\begin{aligned} & \hline-1 \\ & -40 \end{aligned}$	$\begin{gathered} \hline 1 \\ 40 \end{gathered}$		
			DG407	Room Full	0.04	$\begin{array}{\|c\|} \hline-1 \\ -100 \end{array}$	$\begin{gathered} \hline 1 \\ 100 \end{gathered}$	$\begin{gathered} -1 \\ -20 \end{gathered}$	$\begin{gathered} 1 \\ 20 \end{gathered}$		
Digital Control											
Logic High Input Voltage	$\mathrm{V}_{\text {INH }}$			Full		2.4		2.4		V	
Logic Low Input Voltage	$\mathrm{V}_{\text {INL }}$			Full			0.8		0.8		
Logic High Input Current	$\mathrm{I}_{\text {AH }}$	$\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}, 15$		Full		-1	1	-1	1		
Logic Low Input Current	I_{AL}	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}$	$=0 \mathrm{~V}$	Full		-1	1	-1	1	$\mu \mathrm{A}$	
Logic Input Capacitance	$\mathrm{C}_{\text {in }}$	$\mathrm{f}=1 \mathrm{MHz}$		Room	7					pF	
Dynamic Characteristics											
Transition Time	${ }^{\text {t }}$ TRANS	See Figure 2		$\begin{gathered} \hline \text { Room } \\ \text { Full } \\ \hline \end{gathered}$	200		$\begin{aligned} & 350 \\ & 450 \\ & \hline \end{aligned}$		$\begin{aligned} & 350 \\ & 450 \\ & \hline \end{aligned}$	ns	
Break-Before-Make Interval	topen	See Figure 4		Room Full	50	$\begin{aligned} & 25 \\ & 10 \end{aligned}$		$\begin{aligned} & 25 \\ & 10 \end{aligned}$			
Enable Turn-On Time	$\mathrm{t}_{\text {ON(EN }}$	See Figure 3		$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \end{aligned}$	150		$\begin{aligned} & 200 \\ & 400 \end{aligned}$		$\begin{aligned} & 200 \\ & 400 \end{aligned}$		
Enable Turn-Off Time	$\mathrm{t}_{\text {OFF(EN }}$			Room Full	70		$\begin{aligned} & \hline 150 \\ & 300 \\ & \hline \end{aligned}$		$\begin{aligned} & 150 \\ & 300 \end{aligned}$		
Charge Injection	Q	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$,	S $=0 \Omega$	Room	15					pC	
Off Isolation ${ }^{\text {h }}$	OIRR	$\begin{array}{r} V_{E N}=0 \mathrm{~V}, R_{L}= \\ f=100 \mathrm{kH} \end{array}$		Room	-69					dB	
Source Off Capacitance	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$,	$=1 \mathrm{MHz}$	Room	8						
Drain Off Capacitance	$\mathrm{C}_{\mathrm{D} \text { (off) }}$			Room	130						
Drain Of Capaciance		$\begin{gathered} V_{D}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$	DG407	Room	65					pF	
Drain On Capacitance	$\mathrm{C}_{\text {(on) }}$		DG406	Room	140						
			DG407	Room	70						
Power Supplies											
Positive Supply Current	I+	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{A}}=0$ or 5 V		Room Full	13		$\begin{aligned} & 30 \\ & 75 \end{aligned}$		$\begin{aligned} & 30 \\ & 75 \end{aligned}$	$\mu \mathrm{A}$	
Negative Supply Current	I-			$\begin{gathered} \text { Room } \\ \text { Filll } \end{gathered}$	-0.01	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline-1 \\ -10 \end{gathered}$			
Positive Supply Current	I+	$\mathrm{V}_{\mathrm{EN}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V}$		Room Full	50		$\begin{aligned} & 500 \\ & 900 \end{aligned}$		$\begin{aligned} & 500 \\ & 700 \end{aligned}$		
Negative Supply Current	I-			Room Full	-0.01	$\begin{array}{r} -20 \\ -20 \\ \hline \end{array}$		$\begin{array}{r} \hline-20 \\ -20 \\ \hline \end{array}$			

SPECIFICATIONS ${ }^{\text {a }}$ (FOR SINGLE SUPPLY)

Parameter		Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}^{f} \end{gathered}$		Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	$\begin{array}{\|c\|} \hline \text { A Suffix } \\ -55 \text { to } 125^{\circ} \mathrm{C} \end{array}$		$\begin{gathered} \text { D Suffix } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit	
	Symbol			Min ${ }^{\text {d }}$		Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$			
Analog Switch											
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$				Full		0	12	0	12	V
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS(on) }}$	$\mathrm{V}_{\mathrm{D}}=3 \mathrm{~V}, 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$ Sequence Each Switch On		Room	90		120		120	Ω	
$\mathrm{r}_{\text {DS(on) }}$ Matching Between Channels ${ }^{\mathrm{g}}$	$\Delta \mathrm{r}_{\text {DS(on) }}$			Room	5					\%	
Source Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} \text { or } 0.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=0.5 \mathrm{~V} \text { or } 10 \mathrm{~V} \end{gathered}$		Room	0.01					nA	
Drain Off Leakage Current	$\mathrm{I}_{\mathrm{D} \text { (off) }}$		DG406	Room	0.04						
			DG407	Room	0.04						
Drain On Leakage Current	$\mathrm{I}_{\mathrm{D} \text { (on) }}$	$V_{S}=V_{D}= \pm 10$ Sequence Each Switch On	DG406	Room	0.04						
			DG407	Room	0.04						
Dynamic Characteristics											
Switching Time of Multiplexer	topen	$\mathrm{V}_{\mathrm{S} 1}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 8}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}$		Room	300		450		450	ns	
Enable Turn-On Time	$\mathrm{t}_{\text {ON(EN }}$	$\begin{aligned} \mathrm{V}_{\mathrm{INH}}= & 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S} 1}=5 \mathrm{~V} \end{aligned}$		Room	250		600		600		
Enable Turn-Off Time	$\mathrm{t}_{\text {OFF(EN) }}$			Room	150		300		300		
Charge Injection	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$	$\mathrm{R}_{\mathrm{S}}=0$	Room	20					pC	
Power Supplies											
Positive Supply Current	I+	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V}$ or 5 V		Room Full	13		$\begin{aligned} & 30 \\ & 75 \end{aligned}$		$\begin{aligned} & 30 \\ & 75 \end{aligned}$	$\mu \mathrm{A}$	
Negative Supply Current	I-			$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	- 0.01	$\begin{aligned} & \hline-20 \\ & -20 \end{aligned}$		$\begin{aligned} & -20 \\ & -20 \end{aligned}$			

Notes:
a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
g. $\Delta r_{D S(o n)}=r_{D S(o n)} M A X-r_{D S(o n)} M I N$.
h. Worst case isolation occurs on Channel 4 due to proximity to the drain pin.

Vishay Siliconix
TYPICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

TYPICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Switching Times vs. Single Supply

Charge Injection vs. Analog Voltage

Supply Currents vs. Switching Frequency

Switching Threshold vs. Supply Voltage

SCHEMATIC DIAGRAM (TYPICAL CHANNEL)

Figure 1.

TEST CIRCUITS

Figure 2. Transition Time

TEST CIRCUITS

Figure 3. Enable Switching Time

Figure 4. Break-Before-Make Interval

APPLICATIONS HINTS

Sampling speed is limited by two consecutive events: the transition time of the multiplexer, and the settling time of the sampled signal at the output.
$t_{\text {TRANS }}$ is given on the data sheet. Settling time at the load depends on several parameters: $\mathrm{r}_{\mathrm{DS}(o n)}$ of the multiplexer, source impedance, multiplexer and load capacitances, charge injection of the multiplexer and accuracy desired.
The settling time for the multiplexer alone can be derived from the model shown in Figure 5. Assuming a low impedance signal source like that presented by an op amp or a buffer amplifier, the settling time of the RC network for a given accuracy is equal to $n \tau$:

\% ACCURACY	\# BITS	N
0.25	8	6
0.012	12	9
0.0017	15	11

Figure 5. Simplified Model of One Multiplexer Channel

The maximum sampling frequency of the multiplexer is:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{s}}=\frac{1}{\mathrm{~N}\left(\mathrm{t}_{\text {SETTLING }}+\mathrm{t}_{\text {TRANS }}\right)} \tag{1}
\end{equation*}
$$

where $\mathrm{N}=$ number of channels to scan

$$
\mathrm{t}_{\mathrm{SETTLING}}=\mathrm{n} \tau=\mathrm{n} \times \mathrm{r}_{\mathrm{DS} \text { (on) }} \times \mathrm{C}_{\mathrm{D} \text { (on) }}
$$

For the DG406 then, at room temp and for 12-bit accuracy, using the maximum limits:

$$
\begin{equation*}
F_{s}=\frac{1}{16\left(9 \times 100 \Omega \times 10^{-12} \mathrm{~F}\right)+300 \times 10^{-12} \mathrm{~s}} \tag{2}
\end{equation*}
$$

or
$\mathrm{f}_{\mathrm{s}}=694 \mathrm{kHz}$
From the sampling theorem, to properly recover the original signal, the sampling frequency should be more than twice the maximum component frequency of the original signal. This assumes perfect bandlimiting. In a real application sampling at three to four times the filter cutoff frequency is a good practice.
Therefore from equation 2 above:
$f_{c}=\frac{1}{4} \times f_{s}=173 \mathrm{kHz}$
From this we can see that the DG406 can be used to sample 16 different signals whose maximum component frequency can be as high as 173 kHz . If for example, two channels are used to double sample the same incoming signal then its cutoff frequency can be doubled.

APPLICATIONS HINTS

The block diagram shown in Figure 6 illustrates a typical data acquisition front end suitable for low-level analog signals. Differential multiplexing of small signals is preferred since this method helps to reject any common mode noise. This is especially important when the sensors are located at a distance and it may eliminate the need for individual
amplifiers. A low $r_{\text {DS(on) }}$, low leakage multiplexer like the DG407 helps to reduce measurement errors. The low power dissipation of the DG407 minimizes on-chip thermal gradients which can cause errors due to temperature mismatch along the parasitic thermocouple paths. Please refer to Application Note AN203 for additional information.

Figure 6. Measuring low-level analog signals is more accurate when using a differential multiplexing technique.

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

