Precision CMOS Analog Switches

DESCRIPTION

The DG417/418/419 monolithic CMOS analog switches were designed to provide high performance switching of analog signals. Combining low power, low leakages, high speed, low on-resistance and small physical size, the DG417 series is ideally suited for portable and battery powered industrial and military applications requiring high performance and efficient use of board space.

To achieve high-voltage ratings and superior switching performance, the DG417 series is built on Vishay Siliconix's high voltage silicon gate (HVSG) process. Break-beforemake is guaranteed for the DG419, which is an SPDT configuration. An epitaxial layer prevents latchup.

Each switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

The DG417 and DG418 respond to opposite control logic levels as shown in the Truth Table.

FEATURES

- $\pm 15 \mathrm{~V}$ Analog Signal Range
- On-Resistance - $\mathrm{r}_{\mathrm{DS}(o n):} 20 \Omega$
- Fast Switching Action - t_{ON} : 100 ns
- Ultra Low Power Requirements - $\mathrm{P}_{\mathrm{D}}: 35 \mathrm{nW}$

RoHS* COMPLIANT

- TTL and CMOS Compatible
- MiniDIP and SOIC Packaging
- 44 V Supply Max Rating

BENEFITS

- Wide Dynamic Range
- Low Signal Errors and Distortion
- Break-Before-Make Switching Action
- Simple Interfacing
- Reduced Board Space
- Improved Reliability

APPLICATIONS

- Precision Test Equipment
- Precision Instrumentation
- Battery Powered Systems
- Sample-and-Hold Circuits
- Military Radios
- Guidance and Control Systems
- Hard Disk Drives

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

DG419

TRUTH TABLE		
Logic	DG417	DG418
0	ON	OFF
1	OFF	ON

Logic "0" $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

TRUTH TABLE - DG419

Logic	$\mathbf{S W}_{\mathbf{1}}$	$\mathbf{S W}_{\mathbf{2}}$
0	ON	OFF
1	OFF	ON

Logic " 0 " $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

* Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay Siliconix

ORDERING INFORMATION		
Temp Range	Package	Part Number
DG417/DG418		
- 40 to $85^{\circ} \mathrm{C}$	8-Pin Plastic MiniDIP	$\begin{gathered} \text { DG417DJ } \\ \text { DG417DJ-E3 } \end{gathered}$
		$\begin{gathered} \hline \text { DG418DJ } \\ \text { DG418DJ-E3 } \end{gathered}$
	8-Pin Narrow SOIC	$\begin{gathered} \text { DG417DY } \\ \text { DG417DY-E3 } \\ \text { DG417DY-T1 } \\ \text { DG417DY-T1-E3 } \end{gathered}$
		$\begin{gathered} \text { DG418DY } \\ \text { DG418DY-E3 } \\ \text { DG418DY-T1 } \\ \text { DG418DY-T1-E3 } \end{gathered}$
DG419		
- 40 to $85{ }^{\circ} \mathrm{C}$	8-Pin Plastic MiniDIP	$\begin{gathered} \text { DG419DJ } \\ \text { DG419DJ-E3 } \end{gathered}$
	8-Pin Narrow SOIC	$\begin{gathered} \text { DG419DY } \\ \text { DG419DY-E3 } \\ \text { DG419DY-T1 } \\ \text { DG419DY-T1-E3 } \end{gathered}$

ABSOLUTE MAXIMUM RATINGS			
Parameter		Limit	Unit
Voltages Referenced V+ to V-		44	V
GND		25	
V_{L}		(GND - 0.3) to (V+) + 0.3	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		$(\mathrm{V}-)-2 \text { to }(\mathrm{V}+)+2$ or 30 mA , whichever occurs first	
Current, (Any Terminal) Continuous		30	mA
Current, S or D (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)		100	
Storage Temperature	(AK Suffix)	- 65 to 150	${ }^{\circ} \mathrm{C}$
	(DJ, DY Suffix)	- 65 to 125	
Power Dissipation (Package) ${ }^{\text {b }}$	8-Pin Plastic MiniDIP ${ }^{\text {c }}$	400	mW
	8-Pin Narrow SOIC ${ }^{\text {d }}$	400	
	8-Pin CerDIP ${ }^{\text {e }}$	600	

Notes:

a. Signals on S_{X}, D_{X}, or $I N_{X}$ exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
d. Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
e. Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

SCHEMATIC DIAGRAM (TYPICAL CHANNEL)

Figure 1.

SPECIFICATIONS ${ }^{\text {a }}$									
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{f} \end{gathered}$	Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	$\begin{gathered} \text { A Suffix } \\ -55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { D Suffix } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit
					Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	
Power Supplies									
Positive Supply Current	$1+$	$\begin{gathered} \mathrm{V}_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	0.001		$\begin{aligned} & 1 \\ & 5 \end{aligned}$		$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\mu \mathrm{A}$
Negative Supply Current	I-		$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	-0.001	$\begin{aligned} & -1 \\ & -5 \end{aligned}$		$\begin{aligned} & -1 \\ & -5 \end{aligned}$		
Logic Supply Current	I_{L}		Room Full	0.001		1 5		1 5	
Ground Current	$\mathrm{I}_{\text {GND }}$		Room Full	- 0.0001	-1 -5		-1 -5		

SPECIFICATIONS FOR UNIPOLAR SUPPLIES ${ }^{\text {a }}$

Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{f}} \end{gathered}$	Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	$\begin{gathered} \text { A Suffix } \\ -55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { D Suffix } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit
					Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		0	12	0	12	V
Drain-Source On-Resistance	${ }^{\text {r }}$ (${ }_{\text {(on }}$	$\begin{gathered} \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=3.8 \mathrm{~V} \\ \mathrm{~V}+=10.8 \mathrm{~V} \end{gathered}$	Room	40					Ω
Dynamic Characteristics									
Turn-On Time	t_{ON}	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$	Room	110					
Turn-Off Time	toff	See Switching Time Test Circuit	Room	40					ns
Break-Before-Make Time Delay	$t_{\text {D }}$	$\begin{gathered} \text { DG419 Only } \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room	60					
Charge Injection	Q	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}, \mathrm{V}_{\text {gen }}=0 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega$	Room	5					pC
Power Supplies									
Positive Supply Current	$1+$	$\begin{gathered} \mathrm{V}_{+}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5.25 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V} \end{gathered}$	Room	0.001					
Negative Supply Current	I-		Room	-0.001					
Logic Supply Current	I_{L}		Room	0.001					$\mu \mathrm{A}$
Ground Current	$I_{\text {GND }}$		Room	-0.001					

Notes:

a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Vishay Siliconix

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Vishay Siliconix

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Switching Time vs. Temperature

Switching Time vs. Supply Voltages

f - Frequency (Hz)
Power Supply Currents vs. Switching Frequency

Crosstalk and Off Isolation vs. Frequency

Supply Current vs. Temperature

TEST CIRCUITS

V_{O} is the steady state output with the switch on.

C_{L} (includes fixture and stray capacitance)

$$
V_{O}=V_{S} \quad \frac{R_{L}}{R_{L}+r_{D S}(o n)}
$$

Note: Logic input waveform is inverted for switches that have the opposite logic sense.

Figure 2. Switching Time (DG417/418)

Figure 3. Break-Before-Make (DG419)

Figure 4. Transition Time (DG419)

Vishay Siliconix

TEST CIRCUITS

Figure 5. Charge Injection

Figure 6. Crosstalk (DG419)

Off Isolation =20 log $\left|\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{V}_{\mathrm{O}}}\right|$

Figure 7. Off Isolation

Figure 8. Insertion Loss

TEST CIRCUITS

Figure 9. Source/Drain Capacitances

APPLICATIONS

Switched Signal Powers Analog Switch

The analog switch in Figure 10 derives power from its input signal, provided the input signal amplitude exceeds 4 V and its frequency exceeds 1 kHz .

This circuit is useful when signals have to be routed to either of two remote loads. Only three conductors are required: one for the signal to be switched, one for the control signal and a common return.

A positive input pulse turns on the clamping diode D_{1} and charges C_{1}. The charge stored on C_{1} is used to power the chip; operation is satisfactory because the switch requires less than $1 \mu \mathrm{~A}$ of stand-by supply current. Loading of the signal source is imperceptible. The DG419's on-resistance is a low 100Ω for a 5 V input signal.

Figure 10. Switched Signal Powers Remote SPDT Analog Switch

APPLICATIONS

Micropower UPS Transfer Switch

When V_{CC} drops to 3.3 V , the DG 417 changes states, closing SW_{1} and connecting the backup cell, as shown in Figure 10. D_{1} prevents current from leaking back towards the rest of the circuit. Current consumption by the CMOS analog switch is around 100 pA ; this ensures that most of the power available is applied to the memory, where it is really needed. In the stand-by mode, hundreds of A are sufficient to retain memory data.

When the 5 V supply comes back up, the resistor divider senses the presence of at least 3.5 V , and causes a new change of state in the analog switch, restoring normal operation.

Programmable Gain Amplifier

The DG419, as shown in Figure 11, allows accurate gain selection in a small package. Switching into virtual ground reduces distortion caused by $r_{\text {DS(on) }}$ variation as a function of analog signal amplitude.

GaAs FET Driver

The DG419, as shown in Figure 12 may be used as a GaAs FET driver. It translates a TTL control signal into-8 V, 0 V level outputs to drive the gate.

Figure 11. Micropower UPS Circuit

Figure 12. Programmable Gain Amplifier

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

