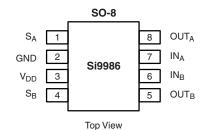


Buffered H-Bridge

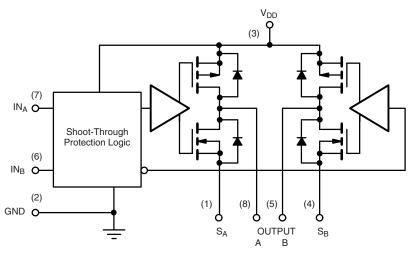
DESCRIPTION

The Si9986 is an integrated, buffered H-bridge with TTL compatible inputs and the capability of delivering a continuous 1.0 A at $V_{DD}=12~V$ (room temperature) at switching rates up to 200 kHz. Internal logic prevents the upper and lower outputs of either half-bridge from being turned on simultaneously. Unique input codes allow both outputs to be forced low (for braking) or forced to a high impedance level.

The Si9986 is available in both standard and lead (Pb)-free, 8-pin SOIC packages, specified to operate over a voltage range of 3.8 V to 13.2 V, and the commercial temperature range of 0 to 70 $^{\circ}$ C (C suffix) and the industrial temperature range of - 40 to 85 $^{\circ}$ C (D suffix).


FEATURES

- 1.0 A H-Bridge
- · 200 kHz Switching Rate
- Shoot-Through Limited
- TTL Compatible Inputs
- 3.8 to 13.2 V Operating Range
- Surface Mount Packaging


APPLICATIONS

- VCM Driver
- Brushed Motor Driver
- Stepper Motor Driver
- Power Converter
- · Optical Disk Drives
- · Power Supplies
- High Performance Servo

FUNCTIONAL BLOCK DIAGRAM, PIN CONFIGURATION AND TRUTH TABLE

TRUTH TABLE				
INA	IN _B	OUTA	OUTB	
1	0	1	0	
0	1	0	1	
0	0	0	0	
1	1	HiZ	HiZ	

PIN DESCRIPTION			
Pin Number	Name	Function	
1	S _A	Source of the low-side MOSFET on bridge arm A	
2	GND	Ground	
3	V_{DD}	IC power supply	
4	S _B	Source of the low-side MOSFET on bridge arm B	
5	OUTB	Center tap of bridge arm B. Connects to one end of the load	
6	IN _B	Input signal to control bridge arm B	
7	IN _A	Input signal to control bridge arm A	
8	OUT _A	Center tap of bridge arm A. Connects to the other end of the load	

* Pb containing terminations are not RoHS complian	t, exemptions may apply.
--	--------------------------

ORDERING INFORMATION				
Part Number	Temperature Range	Package		
Si9986CY-T1	0 to 70 °C	Topo and Book		
Si9986DY-T1	- 40 to 85 °C	Tape and Reel		
Si9986CY-T1-E3	0 to 70 °C	Lead (Pb)-free		
Si9986DY-T1-E3	- 40 to 85 °C	Tape and Reel		
Si9986CY	0 to 70 °C	Bulk (tubes)		
Si9986DY	- 40 to 85 °C	bulk (tubes)		

RoHS*

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS ^a				
Parameter		Limit	Unit	
Voltage on any Pin with Respect to Ground		- 0.3 to V _{DD} + 0.3		
Voltage on Pins 5, 8 with Respect to GND		- 1 to V _{DD} + 1	V	
Voltage on Pins 1, 4		- 0.3 to GND + 1		
Peak Output Current		1.5	A	
Storage Temperature		- 65 to 150	°C	
Maximum Junction Temperature (T _J)		150		
Maximum V _{DD}		15	V	
Power Dissipation ^b		1	W	
Θ_{JA}		100	°C/W	
Operating Temperature Range	Si9986CY	0 to 70	°C	
	Si9986DY	- 45 to 85		

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE				
Parameter	Limit	Unit		
V_{DD}	3.8 to 13.2	V		
Maximum Junction Temperature (T _J)	125	°C		

SPECIFICATIONS								
		Test Conditions Unless Otherwise Specified $V_{DD} = 3.8 \text{ to } 13.2 \text{ V}$ S_A at GND, S_B at GND			Limits Suffix, 0 to 70 Iffix, - 40 to 8		;	
Parameter	Symbol			Min ^a	Typ ^b	Max ^a	Unit	
Input								
Input Voltage High	V _{INH}			2			V	
Input Voltage Low	V_{INL}					1	V	
Input Current with Input Voltage High	I _{INH}	$V_{IN} = 2$! V			1	μΑ	
Input Current with Input Voltage Low	I _{INL}	V _{IN} = 0 V		- 1			μΑ	
Output								
		I _{OUT} = - 500 mA	V _{DD} = 10.8 V	10.5	10.7			
Output Voltage High	V _{OUTH}		$V_{DD} = 4.5 \text{ V}$	4.1	4.3			
		I _{OUT} = - 300 mA, V _{DD} = 3.8 V		3.4	3.7		V	
	V _{OUTL}	I _{OUT} = 500 mA	V _{DD} = 10.8 V		0.2	0.3		
Output Voltage Low			V _{DD} = 4.5 V		0.2	0.4		
		$I_{OUT} = 300 \text{ mA}, V_{DD} = 3.8 \text{ V}$			0.1	0.4		
Output Leakage Current High	I _{OLH}	$IN_A = IN_B \ge 2 \text{ V}, V_{OUT} = V_{DD} = 13.2 \text{ V}$		- 10	0		μΑ	
Output Leakage Current Low	I _{OLL}	V _{OUT} = 0, V _{DD} = 13.2 V			0	10	μΑ	
Output V Clamp High	V_{CLH}	$IN_{\Delta} = IN_{B} \ge 2 \text{ V}$	I _{OUT} = 100 mA		$V_{DD} + 0.7$		V	
Output V Clamp Low	V _{CLL}	1114 - 111B = 5 A	I _{OUT} = - 100 mA		- 0.7			
Supply								
V _{DD} Supply Current	I _{DD} _	IN = 100 kHz, V _{DD} = 5 V			2	•	mA	
VDD Supply Culterit		$IN_A = IN_B = 4.5 \text{ V}, V_{DD} = 5.5 \text{ V}$				300	μΑ	
Dynamic						_		
Propogation Delay Time	T _{PLH}	V _{DD} = 5 V			300		nS	
Tropogation Delay Time	T _{PHL}				100			

a. Device Mounted with all leads soldered or welded to PC board.
 b. Derate 10 mW/°C above 25 °C.

a. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.