
SKKT 250, SKKH 250

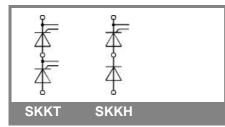
SEMIPACK[®] 3

Thyristor / Diode Modules

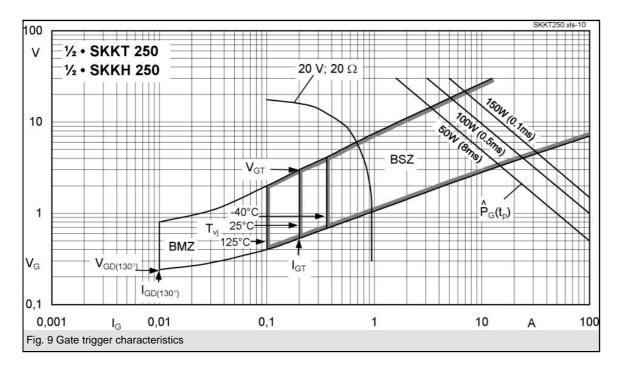
SKKH 250 SKKT 250

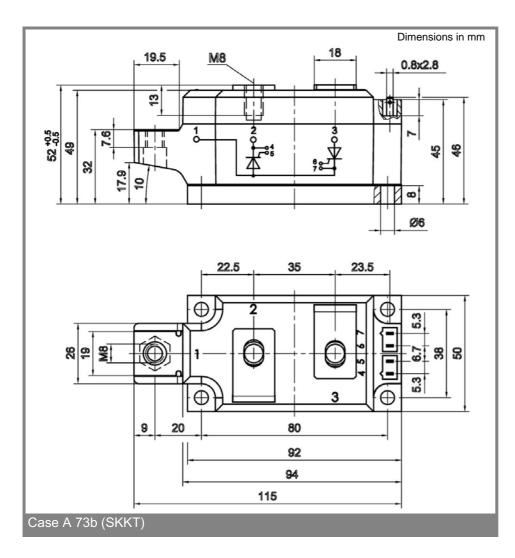
Preliminary Data

Features


- Heat transfer through aluminium nitride ceramic isolated metal baseplate
- Precious metal pressure contacts for high reliability
- Thyristor with amplifying gate
- UL recognized, file no. E 63 532

Typical Applications


- DC motor control (e. g. for machine tools)
- AC motor starters
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions
- 2) The screws must be lubricated


V _{RSM}	V _{RRM} , V _{DRM}	I _{TRMS} = 420 A (maximum value for continuous operation)		
V	V	I _{TAV} = 250 A (sin. 180; T _c = 85 °C)		
900	800	SKKT 250/08E		
1300	1200	SKKT 250/12E	SKKH 250/12E	
1500	1400	SKKT 250/14E	SKKH 250/14E	
1700	1600	SKKT 250/16E	SKKH 250/16E	
1900	1800	SKKT 250/18E	SKKH 250/18E	

Symbol	Conditions	Values	Units
ITAV	sin. 180; T _c = 85 (100) °C	250 (178)	A
I _D	P16/200F; T _a = 35 °C; B2/B6	450 / 585	A
I _{RMS}	P16/200F; T _a = 35 °C; W1 / W3	566 / 3 * 471	A
I _{TSM}	T _{vi} = 25 °C; 10 ms	9000	A
	T _{vi} = 130 °C; 10 ms	8000	A
i²t	T _{vj} = 25 °C; 8,3 10 ms	405000	A²s
	T _{vj} = 130 °C; 8,3 10 ms	320000	A²s
V _T	T _{vi} = 25 °C; I _T = 750 A	max. 1,4	V
V _{T(TO)}	T _{vi} = 130 °C	max. 0,925	V
r _T	T _{vj} = 130 °C	max. 0,45	mΩ
I _{DD} ; I _{RD}	$T_{vj} = 130 \text{ °C}; V_{RD} = V_{RRM}; V_{DD} = V_{DRM}$	max. 50	mA
t _{gd}	T _{vj} = 25 °C; I _G = 1 A; di _G /dt = 1 A/μs	1	μs
t _{gr}	$V_{\rm D} = 0.67 * V_{\rm DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 130 °C	max. 250	A/µs
(dv/dt) _{cr}	T _{vi} = 130 °C	max. 1000	V/µs
ta	T _{vi} = 130 °C	50 150	μs
I _H	$T_{vj} = 25 \text{ °C; typ. / max.}$	150 / 500	mA
I _L	$T_{vj} = 25 \text{ °C}; R_G = 33 \Omega; \text{ typ. / max.}$	300 / 2000	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
I _{GT}	T _{vi} = 25 °C; d.c.	min. 200	mA
V _{GD}	T _{vi} = 130 °C; d.c.	max. 0,25	V
I _{GD}	T _{vi} = 130 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.; per thyristor / per module	0,14 / 0,07	K/W
R _{th(j-c)}	sin. 180; per thyristor / per module	0,15 / 0,075	K/W
R _{th(j-c)}	rec. 120; per thyristor / per module	0,165 / 0,083	K/W
R _{th(c-s)}	per thyristor / per module	0,04 / 0,02	K/W
T _{vi}		- 40 + 130	°C
T _{stq}		- 40 + 130	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
Ms	to heatsink	5 ± 15 % ¹⁾	Nm
Mt	to terminals	9 ± 15 % ²⁾	Nm
a່		5 * 9,81	m/s²
m	approx.	600	g
Case	SKKT	A 73b	
	SKKH	A 76b	

SKKT 250, SKKH 250

Case A 76b

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.