CMOS Programmable Bit Rate Generator

The HD-4702 Bit Rate Generator provides the necessary clock signals for digital data transmission systems, such as a UART. It generates 13 commonly used bit rates using an onchip crystal oscillator or an external input. For conventional operation generating 16 output clock pulses per bit period, the input clock frequency must be 2.4576 MHz (i.e. 9600 Baud $\times 16 \times 16$, since there is an internal ${ }^{3} 16$ prescaler). A lower input frequency will result in a proportionally lower output frequency.
The HD-4702 can provide multi-channel operation with a minimum of external logic by having the clock frequency CO and the ${ }^{3} 8$ prescaler outputs Q0, Q1, Q2 available externally. All signals have a 50% duty cycle except 1800 Baud, which has less than 0.39% distortion.

The four rate select inputs (S0-S3) select which bit rate is at the output (Z). See Truth Table for Rate Select Inputs for select code and output bit rate. Two of the 16 select codes for the HD-4702 do not select an internally generated frequency, but select an input into which the user can feed either a different frequency, or a static level (High or Low) to generate "ZERO BAUD".
The bit rates most commonly used in modern data terminals (110, 150, 300, 1200, 2400 Baud) require that no more than one input be grounded for the HD-4702, which is easily achieved with a single 5-position switch.
The HD-4702 has an initialization circuit which generates a master reset for the scan counter. This signal is derived from a digital differentiator that senses the first high level on the CP input after the ECP input goes low. When ECP is high, selecting the crystal input, CP must be low. A high level on CP would apply a continuous reset. See Clock Modes and Initialization below.

Truth Table

TRUTH TABLE FOR RATE SELECT INPUTS
(Using 2.4576MHz Crystal)

S3	S2	S1	S0	OUTPUT RATE (Z)
L	L	L	L	MUX Input (IM)
L	L	L	H	MUX Input (IM)
L	L	H	L	50 Baud
L	L	H	H	75 Baud
L	H	L	L	134.5 Baud
L	H	L	H	200 Baud
L	H	H	L	600 Baud
L	H	H	H	2400 Baud
H	L	L	L	9600 Baud
H	L	L	H	4800 Baud
H	L	H	L	1800 Baud
H	L	H	H	1200 Baud
H	H	L	L	2400 Baud
H	H	L	H	300 Baud
H	H	H	L	150 Baud
H	H	H	H	110 Baud

NOTE: 19200 Baud by connecting Q2 to IM

Features

- HD-4702 Provides 13 Commonly Used Bit Rates
- Uses a 2.4576MHz Crystal/Input for Standard Frequency Output (16 Times Bit Rate)
- Low Power Dissipation
- Conforms to EIA RS-404
- One HD-4702 Controls up to Eight Transmission Channels
- Initialization Circuit Facilitates Diagnostic Fault Isolation
- On-Chip Input Pull-Up Circuit

Ordering Information

PACKAGE	TEMP. RANGE ($\left.{ }^{\circ} \mathrm{C}\right)$	PART NUMBER	PART MARKING	PKG. NO.
PDIP	-40 to +85	HD3-4702-9	HD3-4702-9	E16.3
PDIP (Pb-free)	-40 to +85	HD3-4702-9Z*	HD3-4702-9Z	E16.3
CerDIP SMD\#	-55 to +125	$5962-9051801$ MEA		

*Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

Pinout

Pin Description

PIN NUMBER	TYPE	SYMBOL	DESCRIPTION
16		V_{CC}	V_{CC} ：Is the +5 V power supply pin．A $0.1 \mu \mathrm{~F}$ capacitor between pins 16 and 8 is recommended for decoupling．
8		GND	GROUND
5	I	CP	EXTERNAL CLOCK INPUT
4	I	$\overline{\mathrm{E}}_{\mathrm{CP}}$	EXTERNAL CLOCK ENABLE：A low signal on this input allows the baud rate to be generated from the CP input．
7	I	I_{X}	CRYSTAL INPUT
6	0	O_{X}	CRYSTAL DRIVE OUTPUT
15	I	I_{M}	MULTIPLEXED INPUT
11，12，13， 14	1	S0－S3	BAUD RATE SELECT INPUTS
9	O	CO	CLOCK OUTPUT
1，2， 3	O	$\mathrm{Q}_{0}-\mathrm{Q}_{2}$	SCAN COUNTER OUTPUTS
10	O	Z	BIT RATE OUTPUT

CLOCK MODES AND INITIALIZATION

IX	$\bar{E}_{C P}$	CP	OPERATION
」几	H	L	Clocked from IX
X	L	几几	Clocked from CP
X	H	H	Continuous Reset
X	L	\checkmark	Reset During 1st CP＝High Time

H＝HIGH Level
L＝LOW Level
X＝Don＇t Care
几几＝Clock Pulse
$\checkmark _=1$ st HIGH Level Clock Pulse after \bar{E}_{CP} goes LOW
NOTE：Actual output frequency is 16 times the indicated Output Rate，assuming a clock frequency of 2.4576 MHz ．
(a) N

Application Information

Single Channel Bit Rate Generator

Figure 1 shows the simplest application of the HD-4702. This circuit generates one of five possible bit rates as determined by the setting of a single pole, 5-position switch. The Bit Rate Output (Z) drives one standard TTL load or four low power Schottky loads over the full temperature range. The possible output frequencies correspond to 110, 150, 300, 1200, and 2400 Baud. For many low cost terminals, these five bit rates are adequate.

\dagger See Table 1.

SWITCH POSITION	HD-4702 BIT RATE
1	110 Baud
2	150 Baud
3	300 Baud
4	1200 Baud
5	2400 Baud

FIGURE 1. SWITCH SELECTABLE BIT RATE GENERATOR CONFIGURATION PROVIDING FIVE BIT RATES

Simultaneous Generation of Several Bit Rates

Figure 2 shows a simple scheme that generates eight bit rates on eight output lines, using one HD-4702 and one 93L34 Bit Addressable Latch. This and the following applications take advantage of the built-in scan counter (prescaler) outputs. As shown in the block diagram, these outputs $\left(\mathrm{Q}_{0}\right.$ to $\left.\mathrm{Q}_{2}\right)$ go through a complete sequence of eight states for every halfperiod of the highest output frequency (9600 Baud). Feeding these Scan Counter Outputs back to the Select Inputs of the multiplexer causes the HD-4702 to interrogate sequentially eight different frequency signals. The 93L34 8-bit addressable Latch, addressed by the same Scan Counter Outputs, re-converts the multiplexed single Output (Z) of the HD-4702 into eight parallel output frequency signals. In the simple scheme of Figure 2, input S3 is left open (HIGH) and the following bit rates are generated:

Q0: 110 Baud	Q1: 9600 Baud	Q2: 4800 Baud
Q3: 1800 Baud	Q4: 1200 Baud	Q5: 2400 Baud
Q6: 300 Baud	Q7: 150 Baud	

Other bit rate combinations can be generated by changing the Scan Counter to Selector interconnection or by inserting logic gates into this path.

\dagger See Table 1.
FIGURE 2. BIT RATE GENERATOR CONFIGURATION WITH EIGHT SIMULTANEOUS FREQUENCIES

19200 Baud Operation

Though a 19200 Baud signal is not internally routed to the multiplexer, the HD-4702 can be used to generate this bit rate by connecting the Q_{2} output to IM input and applying select code. An additional 2 -input NOR gate can be used to retain the "Zero Baud" feature on select code 1 for the HD-4702 (See Figure 3).

\dagger See Table 1.
FIGURE 3. 19200 BAUD OPERATION
TABLE 1. CRYSTAL SPECIFICATIONS

PARAMETERS	TYPICAL CRYSTAL SPEC
Frequency	2.4576 MHz "AT" Cut
Series Resistance (Max)	250
Unwanted Modes	$-6.0 \mathrm{~dB}(\mathrm{Min})$
Type of Operation	Parallel
Load Capacitance	$32 \mathrm{pF}+0.5$

Absolute Maximum Ratings

Supply Voltage . +8.0 V
Input, Output or I/O Voltage GND -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
ESD Classification . Class 1
Typical Derating Factor 1mA/MHz Increase in ICCOP

Thermal Information

Thermal Resistance (Typical)	$\theta_{\text {JA }}$	$\theta_{\text {Jc }}$
CERDIP Package.	$78^{\circ} \mathrm{C} / \mathrm{W}$	$23^{\circ} \mathrm{C} / \mathrm{W}$
PDIP Package	$90^{\circ} \mathrm{C} / \mathrm{W}$	N/A
Storage Temperature Range	-6	to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature		
Ceramic Package.		. $+175^{\circ} \mathrm{C}$
Plastic Package		$+150^{\circ} \mathrm{C}$
Maximum Lead Temperature (S		$+300^{\circ} \mathrm{C}$

Die Characteristics

Gate Count
. 720 Gates

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range. +4.5 V to +5.5 V
Operating Temperature Range
HD-4702-9 . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ HD-4702-8 . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Electrical Specifications
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (HD-4702-9), $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (HD-4702-8)

SYMBOL	PARAMETER	LIMITS		UNITS	TEST CONDITIONS
		MIN	MAX		
V_{IH}	Input High Voltage	VCc 70\%	-	V	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-	$\mathrm{V}_{\text {cc }} 30 \%$	V	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
$\mathrm{V}_{\text {OH1 }}$	Output High Voltage	$\mathrm{V}_{\text {CC }}-0.1$	-	V	$\mathrm{I}_{\mathrm{OH}} \leq-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, (Note 1)
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage	-	0.1	V	$\mathrm{I}_{\mathrm{OL}} \leq+1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, (Note 1)
$\mathrm{IIH}^{\text {H }}$	Input High Current	-1	+1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$, All Other Pins $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
IILX	Input Low Current (IX Input)	-1	+1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, All Other Pins $=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
IIL	Input Low Current (All Other Inputs)	-	-100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text {, All Other Pins }=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$
IOHX	Output High Current ($\mathrm{O} \times$)	-0.1	-	mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}-0.5, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, Input at 0 V or V_{CC} per Logic Function or Truth Table
${ }^{\text {IOH1 }}$	Output High Current (All Other Outputs)	-1.0	-	mA	$\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, Input at 0 V or V_{CC} per Logic Function or Truth Table
${ }^{\mathrm{I}} \mathrm{OH} 2$	Output High Current (All Other Outputs)	-0.3	-	mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}-0.5, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, Input at 0 V or $V_{C C}$ per Logic Function or Truth Table
IOLX	Output Low Current (O_{X})	0.1	-	mA	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, Input at 0 V or V_{CC} per Logic Function or Truth Table
${ }^{\text {IOL }}$	Output Low Current (All Other Outputs)	1.6	-	mA	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ Input, at 0 V or V_{CC} per Logic Function or Truth Table
ICC	Supply Current (Static)	-	1500	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\bar{E}}_{\mathrm{CP}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{CP}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \text { All Other Inputs }=\mathrm{GND} \text {, (Note 2) } \end{aligned}$
		-	1000	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\bar{E}}_{\mathrm{CP}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{CP}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \text { All Other Inputs }=\mathrm{V}_{\mathrm{CC}},(\text { Note } 2) \end{aligned}$

NOTES:

1. Interchanging of force and sense conditions is permitted.
2. Input Current and Quiescent Power Supply Current are relatively higher for this device because of active pull-up circuits on all inputs except l .

Electrical Specifications $\quad V_{C C}=5 \mathrm{~V} \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(\mathrm{HD}-4702-9), \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (HD-4702-8)

SYMBOL	AC PARAMETER	LIMITS		UNITS	TEST CONDITIONS
		MIN	MAX		
${ }_{\text {tPLH }}$	Propagation Delay, IX to CO	-	350	ns	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} \leq 7 \mathrm{pF} \text { on } \mathrm{O}_{\mathrm{X}} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \text { (Note 1) } \end{gathered}$
${ }_{\text {tPHL }}$		-	275	ns	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, CP to CO	-	260	ns	
$\mathrm{t}_{\mathrm{PHL}}$		-	220	ns	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, CO to Qn	-	(Note 2)	ns	
$\mathrm{t}_{\text {PHL }}$		-	(Note 2)	ns	
tPLH	Propagation Delay, CO to Z	-	85	ns	
${ }^{\text {P }}$ PHL		-	75	ns	
${ }^{\text {T }}$ LH	Output Transition Time (Except $\mathrm{O}_{\text {X }}$)	-	160	ns	
${ }^{\text {T }}$ HL		-	75	ns	
t_{s}	Set-Up Time, Select to CO	350	-	ns	
t_{h}	Hold Time, Select to CO	0	-	ns	
t_{s}	Set-Up Time, I_{M} to CO	350	-	ns	
th_{h}	Hold Time, I_{M} to CO	0	-	ns	
$\mathrm{t}_{\mathrm{wCP}}(\mathrm{L})$	Minimum Clock Pulse Width, Low (Notes 3, 4)	120	-	ns	
$t_{w C P}(H)$	Minimum Clock Pulse Width, High (Notes 3, 4)	120	-	ns	
$\mathrm{t}_{\mathrm{wCP}}(\mathrm{L})$	Minimum I_{X} Pulse Width, Low (Note 4)	160	-	ns	
$\mathrm{t}_{\mathrm{wCP}}(\mathrm{H})$	Minimum I_{X} Pulse Width, High (Note 4)	160	-	ns	
${ }^{\text {PLH }}$	Propagation Delay I_{X} to CO	-	300	ns	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} \leq 7 \mathrm{pF} \text { on } \mathrm{O}_{\mathrm{X}} \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \text { (Note 1) } \end{gathered}$
${ }_{\text {tPHL }}$		-	250	ns	
$t_{\text {PLH }}$	Propagation Delay CP to CO	-	215	ns	
${ }_{\text {tPHL }}$		-	195	ns	
${ }^{\text {PLH }}$	Propagation Delay CO to Qn	-	(Note 2)	ns	
${ }^{\text {tPHL }}$		-	(Note 2)	ns	
$t_{\text {PLH }}$	Propagation Delay CO to Z	-	75	ns	
${ }_{\text {tPHL }}$		-	65	ns	
${ }^{\text {tiLH }}$	Output Transition Time (Except O_{X})	-	80	ns	
${ }^{\text {THHL }}$		-	40	ns	

NOTES:

1. Propagation Delays ($\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Setup Times $\left(\mathrm{t}_{\mathrm{s}}\right)$, Hold Times $\left(\mathrm{t}_{\mathrm{h}}\right)$, and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
2. For multichannel operation, Propagation Delay (CO to Qn) plus Set-Up Time, Select to CO , is guaranteed to be $\leq 367 \mathrm{~ns}$.
3. The first High Level Clock Pulse after $\overline{\mathrm{E}}_{\mathrm{CP}}$ goes Low must be at least 350 ns long to guarantee reset of all Counters.
4. It is recommended that input rise and fall times to the clock inputs ($C P, I_{X}$) be less than 15 ns .

Capacitance $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; Frequency $=1 \mathrm{MHz}$

SYMBOL	PARAMETER	TYPICAL	UNITS	CONDITIONS
C_{IN}	Input Capacitance	7	pF	All measurements are referenced the device GND
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	15	pF	

Switching Waveforms

NOTE:

1. Setup and Hold times are shown as positive values but may be specified as negative values.

AC Testing Input, Output Waveform

NOTE:

1. AC Testing: All input signals must switch between $V_{I L}$ and $V_{I H}$. Input rise and fall times are driven at 1ns per volt.

Dual-In-Line Plastic Packages (PDIP)

-B-

NOTES:
2. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
3. Dimensioning and tolerancing per ANSI Y14.5M-1982.
4. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
5. Dimensions $A, A 1$ and L are measured with the package seated in JEDEC seating plane gauge GS-3.
6. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25 mm).
7. E and e_{A} are measured with the leads constrained to be perpendicular to datum -C -.
8. e_{B} and e_{C} are measured at the lead tips with the leads unconstrained. e_{C} must be zero or greater.
9. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25 mm).
10. N is the maximum number of terminal positions.
11. Corner leads ($1, \mathrm{~N}, \mathrm{~N} / 2$ and $\mathrm{N} / 2+1$) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030-0.045 inch (0.76-1.14mm).

E16.3 (JEDEC MS-001-BB ISSUE D) 16 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8,10
C	0.008	0.014	0.204	0.355	-
D	0.735	0.775	18.66	19.68	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
e	0.100		BSC	2.54	BSC
$e_{\text {A }}$	0.300		BSC	7.62	
e BSC	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	16		16		9

Rev. 0 12/93

