

NTE2732A Integrated Circuit 32K (4K x 8) NMOS UV Erasable PROM

Description:

The NTE2732A is a 32,768—bits ultraviolet erasable and electrically programmable read—only memory (EPROM) organized as 4,096 words by 8 bits and manufactured using N—Channel Si—Gate MOS processing. With its single +5V power supply and with an access time of 200ns, the NTE2732A is ideal for use with high performance +5V microprocessors such as the NTE3880.

The NTE2732A has an important feature which is the separate output control, Output Enable (\overline{OE}) from the Chip Enable control (\overline{CE}). The \overline{OE} control eliminates bus contention in multiple bus microprocessor systems.

The NTE2732A also features an standby mode which reduces the power dissipation without increasing access time. The active current is 125mA while the maximum standby mode is achieved by applying a TTL-high signal to the $\overline{\text{CE}}$ input.

Features:

- Fast Access Time: 200ns Max
- 0° to +70°C Standard Temperature Range
- Single +5V Power Supply
- Low Standby Current (35mA Max)
- Inputs and Outputs TTL Compatible During Read and Program
- Completely Static

Absolute Maximum Ratings: (Note 1)

All Input or Output Voltages with respect to GND, V ₁	+6 to -0.6V
Supply Voltage with respect to GND during Program, V _{pp}	+22 to -0.6V
Ambient Temperature under Bias, T _A	
Storage Temperature Range, T _{stq}	–65° to +125°C

Note 1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Operating Modes:

PINS	CE	OE/V _{pp}	V _{CC}	OUTPUTS
MODE	(18)	(20)	(24)	(9 – 11, 13–17)
READ	V _{IL}	V _{IL}	+5	D _{OUT}
STANDBY	V _{IH}	Don't Care	+5	HIGH Z
PROGRAM	V _{IL}	V_{PP}	+5	D _{IN}
PROGRAM VERIFTY	V _{IL}	V _{IL}	+5	D _{OUT}
PROGRAM INHIBIT	V _{IH}	V_{PP}	+5	HIGH Z

Read Operation (DC and AC Conditions):

Operating Temperature Range, Topr	0°	to +70°C
V _{CC} Power Supply (Note 2, Note 3)		$5V \pm 5\%$
V _{pp} Voltage (Note 3)	\	$V_{pp} = V_{CC}$

Note 2. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}.

Note 3. V_{PP} may be connected directly to V_{CC} except during programming. The supply current would then be the sum of I_{CC} and I_{PP1} .

DC and Operating Characteristics:

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Load Current	I _{LI}	V _{IN} = 5.5V	-	_	10	μΑ
Output Leakage Current	I _{LO}	V _{OUT} = 5.5V	_	_	10	μΑ
V _{CC} Current Standby	I _{CC1}	$\overline{CE} = V_{IH}, \overline{OE} = V_{IL}, \text{ Note 3}$	_	_	35	mΑ
V _{CC} Current Standby	I _{CC2}	CE = OE = V _{IL} , Note 3	_	70	125	mΑ
Input Low Voltage	V_{IL}		-0.1	_	+0.8	V
Input High Voltage	V_{IH}		2.0		V _{CC} +1	V
Output Low Voltage	V _{OL}	I _{OL} = 2.1mA	_	_	0.45	V
Output High Voltage	V _{OH}	I _{OH} = -400μA	2.4	_	_	V

Note 3. V_{PP} may be connected directly to V_{CC} except during programming. The supply current would then be the sum of I_{CC} and I_{PP1} .

Note 4. Typical values are for $T_A = +25^{\circ}C$ and nominal supply voltages.

AC Characteristics:

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Address to Output Delay	t _{ACC}	CE = OE = V _{IL}	_	_	200	ns
CE to Output Delay	t _{CE}	OE = V _{IL}	_	_	200	ns
OE to Output Delay	t _{OE}	CE = V _{IL}	-	_	100	ns
OE High to Output Float	t _{DF}	CE = V _{IL} , Note 5	0	_	60	ns
Output Hold from Addresses CE or OE whichever occurred first	t _{OH}	CE = OE = V _{IL}	0	-	1	ns

Note 4. Typical values are for $T_A = +25^{\circ}C$ and nominal supply voltages.

Note 5. This parameter is only sampled and is not 100% tested.

<u>Capacitance:</u> (T_A = +25°C, f = 1MHz, Note 5 unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Capacitance except OE/V _{pp}	C _{IN1}	$V_{IN} = 0$	_	4	6	pF
OE/V _{pp} Input Capacitance	C _{IN2}	$V_{IN} = 0$	-	-	20	pF
Output capacitance	C _{OUT}	$V_{OUT} = 0$	-	8	12	pF

Note 4. Typical values are for $T_A = +25^{\circ}C$ and nominal supply voltages.

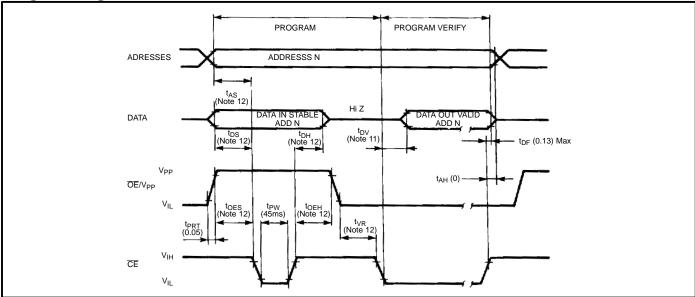
Note 5. This parameter is only sampled and is not 100% tested.

Read Operation (AC Test Conditions):

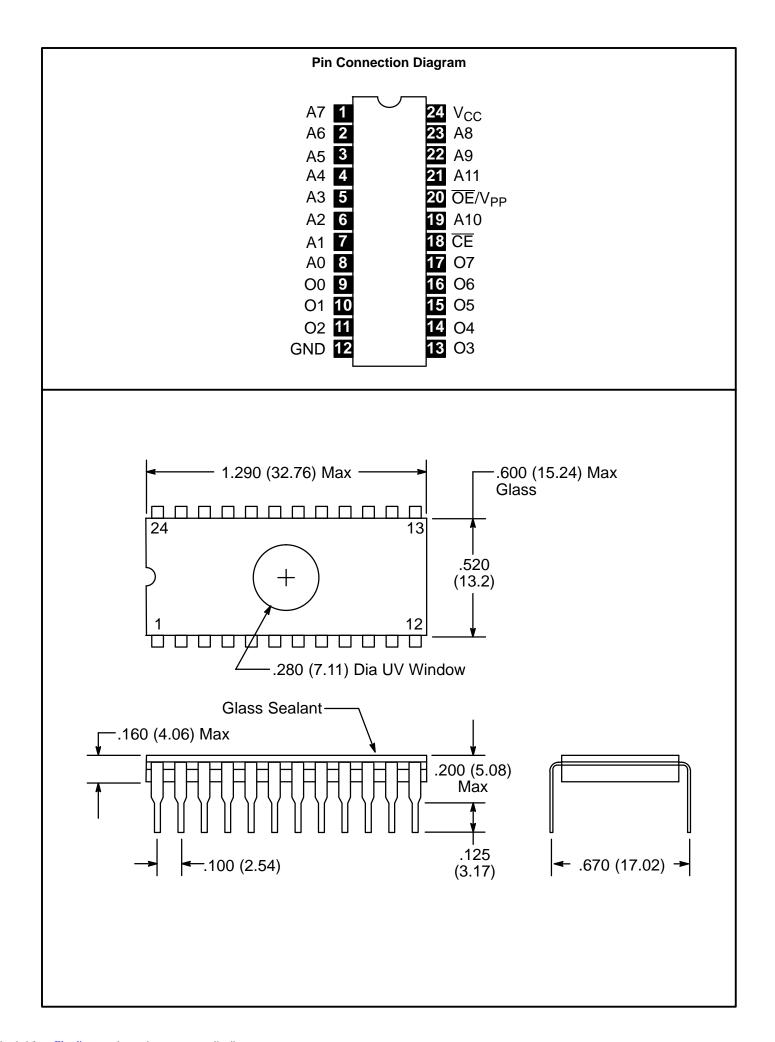
Output Load: 100pF + 1TTL Gate Input Rise and Fall Times: ≤ 20ns Input Pulse Levels: 0.45 to 2.4V

Timing Measurement Reference Levels: Inputs 0.8 and 2V/0.8 and 2V

<u>Programming Operation:</u> $(T_A = +25^{\circ}C \pm 5^{\circ}C, V_{CC} = 5V \pm 5\%, V_{PP} = 21V \pm 0.5V, Note 8, Note 9)$ <u>DC and AC Operating Characteristics:</u>


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Current (All Inputs)	I _{LI}	$V_{IN} = V_{IL}$ or V_{IH}	-	-	10	μΑ
Input Low Level	V _{IL}		-0.1	_	0.8	V
Input High Level	V_{IH}		2.0	_	V _{CC} +1	V
Output Low Voltage During Verify	V _{OL}	$I_{OL} = 2.1 \text{mA}$	_	_	0.45	V
Output High Voltage During Verify	V _{OH}	$I_{OH} = -400 \mu A$	2.4	_	_	V
V _{CC} Supply Current (Active)	I _{CC2}		_	70	125	mA
V _{PP} Supply Current	I _{PP}	$\overline{CE} = V_{IL}, \overline{OE} = V_{PP}$	_	_	30	mΑ

- Note 8. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously with or after V_{PP} . The NTE2732A must not be inserted into or removed from a board with V_{PP} at 21 \pm 0.5V or damage may occur to the device.
- Note 9. The maximum allowable voltage which may be applied to the V_{PP} pin during programming is +22V. Care must be taken when switching the V_{PP} supply to prevent overshoot exceeding this 22V maximum specification.


AC Characteristics:

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Address Set Up Time	t _{AS}		2	_	_	μs
OE Set Up Time	t _{OES}		2	_	_	μs
Data Set Up Time	t _{DS}		2	_	_	μs
Address Hold Time	t _{AH}		0	-	_	μs
Data Hold Time	t _{DH}		2	_	_	μs
Chip Enable to Output Float Delay	t _{DF}		0	_	130	ns
Data Valid from CE	t _{DV}	$\overline{CE} = V_{IL}, \overline{OE} = V_{IL}$	_	_	1	μs
CE Pulse Width During Programming	t_{PW}		45	50	55	ms
OE Pulse Rise Time During Programming	t _{PRT}		50	_	_	ns
V _{PP} Recovery Time	t_{VR}		2	_	_	μs

Programming Waveforms:

- Note 11. All times shown in () are minimum and in μs unless otherwise specified.
- Note 12. The input timing reference level is 1V for V_{IL} and 2V for V_{IH}.
- Note 13. t_{OE} and T_{DE} are characteristics of the device but must be accommodate by the programmer.

