## OMRON's Next-generation Platform for a Wide Range of Detection

$\square$ Features a Power Tuning function that optimizes light reception at the press of a button.
■ Combines newly developed 4-element LEDs with an APC circuit to ensure stable, long-term LED performance.
■ Utilizes OMRON's innovative wire-saving connector.
■ 2-channel models achieve the thinnest profile in the industry, at only 5 mm per channel.
■ 2-channel models also offer AND/OR control output.


## Features

## Equipped with an Industry's First Power Tuning (Optimum Light Setting) Function

The E3X-DA-S/MDA features a Power Tuning function that optimizes power at the press of a button.
This function easily but securely resolves saturation due to short sensing distances or insufficient incident light due to long sensing distances.
In addition, the response speed does not change as mode selection has tuned the power.


## Adoption of Newly Developed 4-Element LEDs and an APC (Auto Power Control) Circuit Achieves Long-term Reliable Detection at the Highest Level in the Industry

The long-term reliable detection at the highest level in the industry is achieved with the innovative APC circuit whose performance is proved by E3X-DA-N series and the newly developed high-power LEDs (4-element type) to ensure super stable, long-term LED performance.
Stable performance is always available without the ON/OFF setting of an APC circuit.


## OMRON's Innovative Wire-saving Connector Inherited from the E3X-DA-N

The amplifier units with connectors supply the power to slave connectors via a master connector. This offers three following advantages.

[^0]

## Models available for a wide variety of applications at manufacturing sites

## Industry Leading Two Amplifiers Loaded in a Small Body .... 2-channel models

Two amplifiers are loaded in a 10 mm -wide body. Space usability can be approximately doubled. In addition, approximately $40 \%$ of the energy can be saved.
(compared to the value per channel of the former model)


## Simpler Digital Fiber Sensors .... Simple \& Easy Single-function Models

UP/DOWN keys
Threshold value adjustment
Required performance and functions have been reviewed from basic points to improve high-performance but hard-to-use digital models. Digital fiber sensors, used in the sense as if using volume type sensors, are added to the basic functions such as an APC function and digital display.

Current value Threshold value



Yes/No: Teaching at two points to be detected
. Advanced Analog Output Models

## High-speed and High-resolution Analog Output Supports Wide Variety of Applications

## Analog Control Output

The voltage in the range of 1 to 5 V is output according to the incident level (digital display). Wide variety of applications is possible including positioning control or difference detection with multiple levels.


Area Output Function Area Judgment Is Possible $\cdots$. . Advanced, Twin-
Only one sensor is enough for area judgment for height or others that has required multiple sensors.
Setting two threshold values allows easy output inside and outside range.

## High-speed and High Resolution

Detection modes can be switched in accordance with applications. High-speed response of $80 \mu \mathrm{~s}$ (super-high-speed mode) supports the positioning controls that require high-speed control.


## Remote Input Function Sensors Controlled from Outside $\cdots$. Advanced, Externalinput Models

Remote settings for teaching/power tuning/light OFF are possible with input signals. The remote input function meets the diversifying demands such as remote settings made for frequent teaching due to level change corresponding to workpiece change or remote operation check of sensors before operation.

## Equipped with an Industry's First ATC Function that Resolves Problems at Manufacturing Sites $\cdots$ Advanced ATC Models



OMRON's unique algorism is equipped to distinguish dust or dirt and the change of workpieces. Automatic correction of threshold values by sensors in accordance with changes prevents malfunctions and improves the operating rates of machines. The ATC function is especially effective for the applications that require highresolution detection.


## Ordering Information

## Amplifier Units

Amplifier Units with Cables


## Amplifier Units with Connectors



## Ratings and Specifications

|  |  |  |  | Contro | I outpu | /input |  |  | Functio |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | source | time | ON/OFF output | Input | Analog output | Power tuning | Timer | Interference prevention | Differential detection | counter | ATC |
| Single-function models |  | Red LED | 1 ms | Only main | --- | --- | --- | --- | $\bigcirc$ | --- | --- | --- |
| Standard | models |  | $50 \mu \mathrm{~s}$ to 4ms |  |  |  | $\bigcirc$ | $\bigcirc$ |  |  |  |  |
| Mark-de- | E3X-DA $\square \mathrm{G}-\mathrm{S}$ | Green LED | $50 \mu \mathrm{~s}$ to 4 ms | Only main | --- | --- | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | --- | --- | --- |
| tecting | 3X-DA $\square$ B-S | Blue LED |  |  |  |  |  |  |  |  |  |  |
| models | E3X-DA $\square \mathrm{H}-\mathrm{S}$ | Infrared LED |  |  |  |  |  |  |  |  |  |  |
| Advanced models | Twin-output models | Red LED | $50 \mu \mathrm{~s}$ to 4 ms | Only main | (1 line) | --- | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | -- |
|  | External-input models |  | $80 \mu \mathrm{~s}$ to 4 ms | $\begin{gathered} \text { Main + } \\ \text { sub } \\ \text { (2 lines) } \end{gathered}$ | --- |  |  |  |  |  |  |  |
|  | ATC function models |  | $130 \mu \mathrm{~s}$ to 4 ms |  |  |  |  |  |  |  | --- | $\bigcirc$ |
|  | Analog output |  | $80 \mu \mathrm{~s}$ to 4 ms | Only main |  | (1 line) |  |  |  | --- |  | --- |
| 2-channel models |  | Red LED | $130 \mu \mathrm{~s}$ to 4 ms | Main + main (2 independent lines) | --- | --- | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | --- | --- | -- |

## Amplifier Unit Connectors (Order Separately)

| Item | Appearance | Cable length | No. of conductors | Model |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 2 m | 3 | E3X-CN11 |
| Master Connector |  |  | 4 | E3X-CN21 |
| Slave Connector |  |  | 1 | E3X-CN12 |
|  |  |  | 2 | E3X-CN22 |

## Combining Amplifier Units and Connectors

Amplifier Units and Connectors are sold separately. Refer to the following tables when placing an order.


## Mobile Console (Order Separately)

| Appearance | Model | Remarks |
| :--- | :--- | :--- |
| E3X-MC11-SV2 | Mobile Console with Head, <br> Cable, and AC adapter pro- <br> vided as accessories |  |
| (model number of set) | Mobile Console |  |

Note: Use the E3X-MC11-SV2 Mobile Console for the E3X-DA-S/MDA-series Amplifier Units. The E3X-MC11-SV2 is an upgraded version of the E3X-MC11-S that is fully interchangeable with the older model.

Accessories (Order Separately) Mounting Bracket

| Appearance | Model | Quantity |
| :---: | :---: | :---: |
|  | E39-L143 | 1 |

End Plate

| Appearance | Model | Quantity |
| :---: | :---: | :---: |
|  | PFP-M | 1 |

## Amplifier Units

| Item | Type <br> Model | Single-function models | Standard models | Mark-detecting models (multiple color light sources) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Green LED | Blue LED | Infrared LED |
|  |  | E3X-DA $\square$ SE-S | E3X-DA $\square$-S | E3X-DAG $\square$-S | E3X-DAB $\square$-S | E3X-DAH口-S |
| Light source (wavelength) |  | Red LED (635 nm) |  | Green LED (525 nm) | Blue LED (470 nm) | Infrared LED (870nm) |
| Power supply voltage |  | 12 to 24 VDC $\pm 10 \%$, ripple (p-p) 10\% max. |  |  |  |  |
| Power consumption |  | 960 mW max. (current consumption: 40 mA max . at power supply voltage of 24 VDC ) |  |  |  |  |
| Control output |  | Load power supply voltage: 26.4 VDC; NPN/PNP open collector; load current: 50 mA max.; residual voltage: 1 V max. |  |  |  |  |
| Protection circuits |  | Reverse polarity for power supply connection, output short-circuit |  |  |  |  |
| Response time | Super-high-speed mode | --- | Operate: $48 \mu \mathrm{~s}$, reset: $50 \mu \mathrm{~s}$ *1, *2 |  |  |  |
|  | High-speed mode | --- | Operate/reset: $250 \mu \mathrm{~s}$ |  |  |  |
|  | Standard mode | Operate or reset: 1 ms |  |  |  |  |
|  | High-resolution mode | --- | Operate or reset: 4 ms |  |  |  |
| Sensitivity setting |  | Teaching or manual method |  |  |  |  |
| Functions | Power tuning | --- | Light emission power and reception gain, digital control method |  |  |  |
|  | Timer function | --- | Select from OFF-delay, ON-delay, or one-shot timer. <br> 1 ms to 5 s (1 to 20 ms set in 1-ms increments, 20 to 200 ms set in 10-ms increments, 200 ms to 1 s set in $100-\mathrm{ms}$ increments, and 1 to 5 s set in 1 s -increments) |  |  |  |
|  | Automatic power control (APC) | High-speed control method for emission current |  |  |  |  |
|  | Zero-reset | --- | Negative values can be displayed. (Threshold value is shifted.) |  |  |  |
|  | Initial reset | Settings can be returned to defaults as required. |  |  |  |  |
|  | Mutual interference prevention | Possible for up to 10 Units *3 |  |  |  |  |
| Display |  | Operation indicator (orange) | Operation indicator (orange), Power Tuning indicator (orange) |  |  |  |
| Digital display |  | incident level + threshold | Select from incident level + threshold or other 6 patterns |  |  |  |
| Display orientation |  | --- | Switching between normal/reversed display is possible. |  |  |  |
| Ambient illumination (Receiver side) |  | Incandescent lamp: 10,000 lux max.Sunlight: $\quad 20,000$ lux max. |  |  |  |  |
| Ambient temperature range |  | Operating: Groups of 1 to 2 Amplifiers: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ Groups of 3 to 10 Amplifiers: $-25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ Groups of 11 to 16 Amplifiers: $-25^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ <br> Storage: $-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation) |  |  |  |  |
| Ambient humidity range |  | Operating and storage: 35\% to 85\% (with no condensation) |  |  |  |  |
| Insulation resistance |  | $20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC ) |  |  |  |  |
| Dielectric strength |  | 1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 minute |  |  |  |  |
| Vibration resistance |  | Destruction: 10 to 55 Hz with a 1.5-mm double amplitude for 2 hrs each in $\mathrm{X}, \mathrm{Y}$ and Z directions |  |  |  |  |
| Shock resistance |  | Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$, for 3 times each in X, Y and Z directions |  |  |  |  |
| Degree of protection |  | IEC 60529 IP50 (with Protective Cover attached) |  |  |  |  |
| Connection method |  | Pre-wired or amplifier unit connector |  |  |  |  |
| Weight (packed state) |  | Pre-wired model: Approx. 100 g , Amplifier unit connector model: Approx. 55 g |  |  |  |  |
| Materials | Case | Polybutylene terephthalate (PBT) |  |  |  |  |
|  | Cover | Polycarbonate (PC) |  |  |  |  |
| Accessories |  | Instruction manual |  |  |  |  |

*1. Communications are disabled if the detection mode is selected during super-high-speed mode, and the communications functions for mutual interference prevention and the Mobile Console will not function
2. PNP output is as follows: Operate: $53 \mu \mathrm{~s}$, reset: $55 \mu \mathrm{~s}$.
*3. Mutual interference prevention can be used for only up to 6 Units if power tuning is enabled.

| TypeItem Model |  | Advanced models |  |  |  | 2-channel models |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | External input models | Twin output models | ATC function models | Analog output models |  |
|  |  | E3X-DA $\square$ RM-S | E3X-DA $\square$ TW-S | E3X-DA $\square$ AT-S | E3X-DA $\square$ AN-S | E3X-MDA $\square$ |
| Light source (wavelength) |  | Red LED (635 nm) |  |  |  |  |
| Power supply voltage |  | 12 to 24 VDC $\pm 10 \%$, ripple (p-p) 10\% max. |  |  |  |  |
| Power consumption |  | 1,080mW max. (current consumption: 45 mA max. at power supply voltage of 24 VDC ) |  |  |  |  |
| Control output | ON/OFF output | Load power supply voltage: 26.4 VDC; NPN/PNP open collector; load current: 50 mA max.; residual voltage: 1 V max. |  |  |  |  |
|  | Analog output | --- |  |  | Control output <br> Voltage output: 1 to 5 VDC <br> (Connection load 10 $\mathrm{k} \Omega \mathrm{min}$.) <br> Temperature characteristics <br> $0.3 \%$ F.S. $/{ }^{\circ} \mathrm{C}$ <br> Response speed/ repeat accuracy <br> Super-high-speed mode: $80 \mu \mathrm{~s} / 1.5 \%$ F.S. <br> High-speed mode: $250 \mu \mathrm{~s} / 1.5 \%$ F.S. Standard mode: $1 \mathrm{~ms} / 1 \% F . S$. High-resolution mode: $4 \mathrm{~ms} / 0.75 \% F . S$. | --- |
| Protection circuits |  | Reverse polarity for power supply connection, output short-circuit |  |  |  |  |
| Response time | Super-high-speed mode | Operate: $48 \mu \mathrm{~s}$, reset: $50 \mu \mathrm{~s}$ *1, *2, *3 | Operate or reset: $80 \mu \mathrm{~s}$ *1 | Operate or reset: $130 \mu \mathrm{~s}$ * 1 | Operate or reset: $80 \mu \mathrm{~s}$ *1 | Operate or reset: $130 \mu \mathrm{~s}$ *1, *4 |
|  | High-speed mode | Operate or reset: $250 \mu \mathrm{~s}$ |  |  |  | Operate or reset: $450 \mu \mathrm{~s}$ |
|  | Standard mode | Operate or reset: 1 ms |  |  |  |  |
|  | High-resolution mode | Operate or reset: 4ms |  |  |  |  |
| Sensitivity setting |  | Teaching or manual method |  |  |  |  |
| Functions | Power tuning | Light emission power and reception gain, digital control method |  |  |  |  |
|  | Differential detection | Switchable between single edge and double edge detection mode Single edge: Can be set to $250 \mu \mathrm{~s}, 500 \mu \mathrm{~s}, 1 \mathrm{~ms}, 10 \mathrm{~ms}$, or 100 ms . Double edge: Can be set to $500 \mu \mathrm{~s}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 20 \mathrm{~ms}$, or 200 ms . |  |  |  |  |
|  | Timer function | Select from OFF-delay, ON-delay, or one-shot timer. |  |  |  |  |
|  |  | 1 ms to 5 s ( 1 to 20 ms set in 1-ms increments, 20 to 200 ms set in 10-ms increments, 200 ms to 1 s set in 100ms increments, and 1 to 5 s set in 1 s -increments) |  |  |  |  |
|  | Automatic power control (APC) | High-speed control method for emission current |  |  |  |  |
|  | Zero-reset | Negative values can be displayed. (Threshold value is shifted.) |  |  |  |  |
|  | Initial reset | Settings can be returned to defaults as required. |  |  |  |  |
|  | Mutual interference prevention | Possible for up to 10 Units *5 |  |  |  | Possible for up to 9 Units ( 18 channels) * 6 |
|  | Counter | Switchable between up counter and down counter. <br> Set count: <br> 0 to 9,999,999 | --- |  |  |  |
|  | I/O setting | External input setting (Select from teaching, power tuning, zero reset, light OFF, or counter reset.) | Output setting (Select from channel 2 output, area output, or self-diagnosis.) | Output setting (Select from channel 2 output, area output, self-diagnosis output, or ATC error output) | Analog output setting (offset voltage adjustable) | Output setting (Select from channel 2 output, AND, OR, leading edge sync, falling edge sync, or differential output) |
| Display |  | Operation indicator (orange), Power Tuning indicator (orange) | Operation indicator Operation indicator | r channel 1 (orange), channel 2 (orange) | Operation indicator (orange), Power Tuning indicator (orange) | Operation indicator for channel 1 (orange), Operation indicator for channel 2 (orange) |

*1. Communications are disabled if the detection mode is selected during super-high-speed mode, and the communications functions for mutual interference prevention and the Mobile Console will not function.
*2. PNP output is as follows: Operate: $53 \mu \mathrm{~s}$, reset: $55 \mu \mathrm{~s}$.
*3. When counter is enabled: $80 \mu \mathrm{~s}$ for operate and reset respectively.
*4. When differential output is selected for the output setting, the second channel output is $200 \mu$ s for operation and reset respectively.
${ }^{*} 5$. Mutual interference prevention can be used for only up to 6 Units if power tuning is enabled.
*6. Mutual interference prevention can be used for up to 5 Units ( 10 channels) if power tuning is enabled.

| Item Model |  | Advanced models |  |  |  | 2-channe models |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | External input models | Twin-output models | ATC function models | Analog output models |  |
|  |  | E3X-DA $\square$ RM-S | E3X-DA $\square$ TW-S | E3X-DA $\square$ AT-S | E3X-DA $\square$ AN-S | E3X-MDA $\square$ |
| Digital display |  | Select from incident level + threshold or other 7 patterns | Select from incident level + threshold or other 6 patterns |  |  | Select from incident level for channel $1+$ incident level for channel 2 or other 7 patterns |
| Display orientation |  | Switching between normal/reversed display is possible. |  |  |  |  |
| Ambient illumination (Receiver side) |  | Incandescent lamp: 10,000 lux max. <br> Sunlight: 20,000 lux max. |  |  |  |  |
| Ambient temperature range |  | Operating: Groups of 1 to 2 Amplifiers: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ Groups of 3 to 10 Amplifiers: $-25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ Groups of 11 to 16 Amplifiers: $-25^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ |  |  |  |  |
|  |  | Storage: $-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation) |  |  |  |  |
| Ambient humidity range |  | Operating and storage: $35 \%$ to 85\% (with no condensation) |  |  |  |  |
| Insulation resistance |  | $20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC ) |  |  |  |  |
| Dielectric strength |  | 1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 minute |  |  |  |  |
| Vibration resistance |  | Destruction: 10 to 55 Hz with a 1.5-mm double amplitude for 2 hrs each in $\mathrm{X}, \mathrm{Y}$ and Z directions |  |  |  |  |
| Shock resistance |  | Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$, for 3 times each in $\mathrm{X}, \mathrm{Y}$ and Z directions |  |  |  |  |
| Degree of protection |  | IEC 60529 IP50 (with Protective Cover attached) |  |  |  |  |
| Connection method |  | Pre-wired or amplifier unit connector |  |  |  |  |
| Weight (packed state) |  | Pre-wired model: Approx. 100 g , Amplifier unit connector model: Approx. 55 g |  |  |  |  |
| Materials | Case | Polybutylene terephthalate (PBT) |  |  |  |  |
|  | Cover | Polycarbonate (PC) |  |  |  |  |
| Accessories |  | Instruction manual |  |  |  |  |

## Amplifier Unit Connectors

| Item | Model | E3X-CN11/21/22 | E3X-CN12 |
| :---: | :---: | :---: | :---: |
| Rated current |  | 2.5 A |  |
| Rated voltage |  | 50 V |  |
| Contact resistance |  | $20 \mathrm{~m} \Omega$ max. ( 20 mVDC max., 100 mA max.) <br> (The figure is for connection to the Amplifier Unit and the adjacent Connector. It does not include the conductor resistance of the cable.) |  |
| No. of insertions |  | Destruction: 50 times <br> (The figure for the number of insertions is for connection to the Amplifier Unit and the adjacent Connector.) |  |
| Materials | Housing | Polybutylene terephthalate (PBT) |  |
|  | Contacts | Phosphor bronze/gold-plated nickel |  |
| Weight (packed state) |  | Approx. 55 g | Approx. 25 g |

## Mobile Console

| Item $\quad$ Model | E3X-MC11-SV2 |
| :--- | :--- |
| Applicable <br> Sensors | E3X-DA-S <br> E3X-MDA <br> E3C-LDA <br> E2C-EDA |
| Power supply <br> voltage | Charged with AC adapter |
| Connection <br> method | Connected via adapter |
| Weight <br> (packed state) | Approx. 580 g (Console <br> only: 120 g ) |
| Refer to Instruction Manual provided with <br> the Mobile Console for details. |  |

## Sensing Distance

 Through-beam Models(Unit: mm)

| Type Model |  |  | E3X-DAワ-S |  |  |  | E3X-MDA $\square$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | High-resoIution mode | Standard mode | Highspeed mode | Super-highspeed mode | High-resoIution mode | Standard mode | Highspeed mode | Super-highspeed mode |
| Standard models | Flexible (new standard) | E32-T11R/E32-T12R/E32-T15XR/ E32-TC200BR(B4R) | 700 | 530 | 350 | 140 | 450 | 350 | 230 | 140 |
|  |  | E32-T14LR/E32-T15YR/E32-T15ZR | 270 | 210 | 130 | 50 | 170 | 130 | 85 | 50 |
|  |  | E32-T21R/E32-T22R/E32-T222R/ E32-T25XR/E32-TC200FR(F4R) | 160 | 130 | 75 | 30 | 100 | 75 | 50 | 30 |
|  |  | E32-T24R/E32-T25YR/E32-T25ZR | 60 | 50 | 25 | 10 | 35 | 27 | 18 | 10 |
|  | Standard | $\begin{aligned} & \text { E32-TC200/E32-T12/E32-T15X/ } \\ & \text { E32-TC200B(B4) } \end{aligned}$ | 1,000 | 760 | 500 | 200 | 650 | 500 | 330 | 200 |
|  |  | E32-T14L/E32-T15Y/E32-T15Z | 600 | 460 | 300 | 120 | 390 | 300 | 200 | 120 |
|  |  | E32-TC200A | 900 | 680 | 450 | 180 | 580 | 450 | 300 | 180 |
|  |  | $\begin{aligned} & \text { E32-TC200E/E32-T22/E32-T222/ } \\ & \text { E32-T25X/E32-TC200F(F4) } \end{aligned}$ | 270 | 220 | 125 | 50 | 170 | 130 | 85 | 50 |
|  |  | E32-T24/E32-T25Y/E32-T25Z | 160 | 130 | 75 | 30 | 100 | 70 | 45 | 30 |
|  | Breakresistant | E32-T11/E32-T12B/E32-T15XB | 900 | 680 | 450 | 180 | 580 | 450 | 300 | 180 |
|  |  | E32-T21/E32-T221B/E32-T22B | 240 | 200 | 110 | 45 | 150 | 110 | 70 | 45 |
|  |  | E32-T25XB | 180 | 150 | 85 | 35 | 125 | 95 | 60 | 35 |
|  | Fluorine coating | E32-T11U | 900 | 680 | 450 | 180 | 580 | 450 | 300 | 180 |
| Specialbeam models | Longdistance, high power | E32-T17L | 20,000*1 | 20,000*1 | 10,000 | 4,000 | 13,000 | 10,000 | 6,500 | 4,000 |
|  |  | E32-TC200 + E39-F1 | 4,000*2 | 4,000*2 | 2,600 | 1,500 | 4,000 | 3,700 | 2,400 | 1,500 |
|  |  | E32-T11R + E39-F1 | 4,000*2 | 3,700 | 2,400 | 970 | 3,100 | 2,400 | 1,600 | 970 |
|  |  | E32-T11 + E39-F1 | 4,000*2 | 3,600 | 2,300 | 930 | 3,000 | 2,300 | 1,500 | 930 |
|  |  | E32-T14 | 4,000*2 | 3,400 | 2,250 | 900 | 2,900 | 2,200 | 1,450 | 900 |
|  |  | E32-T11L/E32-T12L | 1,700 | 1,330 | 870 | 350 | 1,100 | 870 | 580 | 350 |
|  |  | E32-T11L + E39-F2 | 910 | 800 | 500 | 180 | 600 | 520 | 340 | 180 |
|  |  | E32-T11R + E39-F2 | 520 | 400 | 250 | 100 | 330 | 260 | 170 | 100 |
|  |  | E32-T11 + E39-F2 | 820 | 660 | 430 | 160 | 530 | 430 | 280 | 160 |
|  |  | E32-T21L/E32-T22L | 540 | 440 | 250 | 100 | 340 | 260 | 170 | 100 |
|  | Ultracompact, ultrafine sleeve | E32-T223R | 160 | 130 | 75 | 30 | 110 | 85 | 55 | 30 |
|  |  | E32-T33-S5 | 53 | 44 | 25 | 10 | 35 | 28 | 18 | 10 |
|  |  | E32-T333-S5 | 12 | 10 | 6 | 4 | 8 | 6 | 5 | 4 |
|  |  | E32-T334-S5 | 6 | 5 | 3 | 2 | 4 | 3 | 2 | 2 |
|  | Fine beam | E32-T22S | 2,500 | 1,900 | 1,250 | 500 | 1,600 | 1,250 | 830 | 500 |
|  |  | E32-T24S | 1,750 | 1,300 | 870 | 350 | 1,100 | 870 | 580 | 350 |
|  | Area sensing | E32-T16PR | 1,100 | 840 | 560 | 220 | 730 | 560 | 370 | 220 |
|  |  | E32-T16P | 1,500 | 1,100 | 750 | 300 | 970 | 750 | 500 | 300 |
|  |  | E32-T16JR | 980 | 750 | 480 | 190 | 600 | 480 | 320 | 190 |
|  |  | E32-T16J | 1,300 | 1,000 | 650 | 260 | 800 | 650 | 430 | 260 |
|  |  | E32-T16WR | 1,700 | 1,300 | 850 | 340 | 1,100 | 860 | 570 | 340 |
|  |  | E32-T16W | 2,300 | 1,800 | 1,150 | 450 | 1,400 | 1,100 | 730 | 450 |
|  |  | E32-T16 | 3,700 | 2,800 | 1,850 | 740 | 2,400 | 1,800 | 1,200 | 740 |
|  |  | E32-M21 | 750 | 610 | 350 | 140 | 470 | 360 | 240 | 140 |

[^1]| Type |  |  | E3X-DA■-S |  |  |  | E3X-MDA $\square$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | High-resolution mode | Standard mode | Highspeed mode | Super-highspeed mode | High-resoIution mode | Standard mode | Highspeed mode | Super-highspeed mode |
| Environment resistive models | Heatresistant | E32-T51 | 1,000 | 760 | 500 | 200 | 650 | 500 | 330 | 200 |
|  |  | E32-T54 | 300 | 230 | 150 | 60 | 190 | 150 | 100 | 60 |
|  |  | E32-T81R-S | 360 | 280 | 180 | 70 | 230 | 180 | 120 | 70 |
|  |  | E32-T61-S + E39-F2 | 600 | 450 | 300 | 120 | 390 | 300 | 200 | 120 |
|  |  | E32-T61-S + E39-F1 | 4,000 | 3,400 | 2,200 | 900 | 3,000 | 2,200 | 1,450 | 900 |
|  |  | E32-T84S-S | 1,750 | 1,300 | 870 | 350 | 1,100 | 870 | 570 | 350 |
|  |  | E32-T61-S | 600 | 450 | 300 | 120 | 390 | 300 | 200 | 120 |
|  | Chemical resistant | E32-T11F | 2,500 | 2,000 | 1,300 | 520 | 1,600 | 1,300 | 850 | 520 |
|  |  | E32-T12F | 4,000* | 3,000 | 2,000 | 800 | 2,600 | 2,000 | 1,300 | 800 |
|  |  | E32-T14F | 500 | 400 | 250 | 100 | 320 | 250 | 160 | 100 |
|  |  | E32-T51F | 1,800 | 1,400 | 900 | 350 | 1,190 | 920 | 600 | 350 |
|  |  | E32-T81F-S | 920 | 700 | 460 | 190 | 600 | 460 | 300 | 190 |
|  | Vacuum resistant | E32-T51V | 260 | 200 | 130 | 50 | 170 | 130 | 85 | 50 |
|  |  | E32-T51V + E39-F1V | 1,350 | 1,000 | 680 | 260 | 850 | 650 | 430 | 260 |
|  |  | E32-T54V | 210 | 130 | 100 | 35 | 110 | 85 | 55 | 35 |
|  |  | E32-T54V + E39-F1V | 660 | 500 | 330 | 180 | 420 | 320 | 210 | 180 |
|  |  | E32-T84SV | 630 | 480 | 320 | 130 | 410 | 310 | 200 | 130 |

* The optical fiber for the E32-T12F is 2 m long on each side, so the sensing distance is $4,000 \mathrm{~mm}$.

Reflective Models
(Unit: mm)


| Type |  |  | E3X-DAワ-S |  |  |  | E3X-MDA $\square$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | High-resolution mode | Standard mode | Highspeed mode | Super-highspeed mode | High-resolution mode | Standard mode | Highspeed mode | Super-highspeed mode |
| Specialbeam models | Long distance, high power | E32-D16 | $\begin{aligned} & 40 \text { to } \\ & 1,000 \end{aligned}$ | $\begin{gathered} 40 \text { to } \\ 700 \end{gathered}$ | $\begin{gathered} 40 \text { to } \\ 450 \end{gathered}$ | $\begin{gathered} 40 \text { to } \\ 240 \end{gathered}$ | $\begin{gathered} 40 \text { to } \\ 600 \end{gathered}$ | $\begin{gathered} 40 \text { to } \\ 490 \end{gathered}$ | $\begin{gathered} 40 \text { to } \\ 300 \end{gathered}$ | $\begin{gathered} 40 \text { to } \\ 240 \end{gathered}$ |
|  |  | E32-D11L | 650 | 400 | 260 | 110 | 400 | 270 | 180 | 110 |
|  |  | E32-D21L/E32-D22L | 210 | 130 | 80 | 35 | 130 | 85 | 55 | 35 |
|  | Ultracompact, ultrafine sleeve | E32-D33 | 25 | 16 | 10 | 4 | 16 | 10 | 6 | 4 |
|  |  | E32-D331 | 5 | 3 | 2 | 0.8 | 3 | 2 | 1.3 | 0.8 |
|  | Coaxial/small spot | E32-CC200R | 250 | 150 | 100 | 45 | 150 | 105 | 65 | 45 |
|  |  | E32-CC200 | 500 | 300 | 200 | 90 | 300 | 210 | 140 | 90 |
|  |  | E32-D32L | 250 | 150 | 100 | 45 | 150 | 100 | 65 | 45 |
|  |  | E32-C31/E32-D32 | 120 | 75 | 50 | 22 | 75 | 50 | 30 | 22 |
|  |  | E32-C42 + E39-F3A | Spot diameter variable in the range 0.1 to 0.6 mm at distances in the range 6 to 15 mm . |  |  |  |  |  |  |  |
|  |  | E32-D32 + E39-F3A | Spot diameter variable in the range 0.5 to 1 mm at distances in the range 6 to 15 mm . |  |  |  |  |  |  |  |
|  |  | E32-C41 + E39-F3A-5 | $0.1-\mathrm{mm}$ dia. spot at a distance of 7 mm . |  |  |  |  |  |  |  |
|  |  | E32-C31 + E39-F3A-5 | $0.5-\mathrm{mm}$ dia. spot at a distance of 7 mm . |  |  |  |  |  |  |  |
|  |  | E32-C41 + E39-F3B | $0.2-\mathrm{mm}$ dia. spot at a distance of 17 mm . |  |  |  |  |  |  |  |
|  |  | E32-C31 + E39-F3B | $0.5-\mathrm{mm}$ dia. spot at a distance of 17 mm . |  |  |  |  |  |  |  |
|  |  | E32-C31 + E39-F3C | Spot diameter of 4 mm max. at distances in the range 0 to 20 mm . |  |  |  |  |  |  |  |
|  | Area sensing | E32-D36P1 | 250 | 150 | 100 | 45 | 150 | 100 | 65 | 45 |
|  | Retroireflective | E32-R21 + E39-R3 (provided) | 10 to 250 |  |  |  |  |  |  |  |
|  |  | E32-R16 + E39-R1 (provided) | 150 to 1,500 |  |  |  |  |  |  |  |
|  | Convergentreflective | E32-L25/E32-L25A | 3.3 |  |  |  |  |  |  |  |
|  |  | E32-L24S | 0 to 4 |  |  |  |  |  |  |  |
|  |  | E32-L24L | 2 to 6 (center 4) |  |  |  |  |  |  |  |
|  |  | E32-L25L | 5.4 to 9 (center 7.2) |  |  |  |  |  |  |  |
|  |  | E32-L86 | 4 to 10 |  |  |  |  |  |  |  |
|  |  | E32-L16 | 0 to 15 |  |  | 0 to 12 | 0 to 15 |  |  | 0 to 12 |
| Environ-mentresistive models | Heatresistant | E32-D51 | 400 | 230 | 160 | 72 | 230 | 165 | 110 | 72 |
|  |  | $\begin{aligned} & \text { E32-D81R-S } \\ & \text { E32-D61-S } \end{aligned}$ | 150 | 90 | 60 | 27 | 90 | 63 | 40 | 27 |
|  |  | E32-D73-S | 100 | 60 | 40 | 18 | 60 | 40 | 25 | 18 |
|  | Chemicalresistant | E32-D12F | 160 | 95 | 65 | 30 | 95 | 70 | 45 | 30 |
|  |  | E32-D14F | 70 | 40 | 30 | 10 | 40 | 28 | 18 | 10 |

Application-specific Models

| Type |  |  | E3X-DAワ-S |  |  |  | E3X-MDA $\square$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | High-resoIution mode | Standard mode | Highspeed mode | Super-highspeed mode | High-resoIution mode | Standard mode | Highspeed mode | Super-highspeed mode |
| Applica-tionspecific models | Label detection | E32-G14 | 10 |  |  |  |  |  |  |  |
|  |  | E32-T14 | 4,000* | 3,400 | 2,250 | 900 | 2,900 | 2,200 | 1,450 | 900 |
|  | Liquid-level detection | E32-L25T | Applicable tube: Transparent tube with a diameter in the range 8 to 10 mm and a recommended wall thickness of 1 mm |  |  |  |  |  |  |  |
|  |  | E32-D36T | Applicable tube: Transparent tube (no restriction on diameter) |  |  |  |  |  |  |  |
|  |  | E32-A01 | Applicable tube: Transparent tube with a diameter of $3.2,6.4$, or 9.5 mm and a recommended wall thickness of 1 mm |  |  |  |  |  |  |  |
|  |  | E32-A02 | Applicable tube: Transparent tube with a diameter in the range 6 to 13 mm and a recommended wall thickness of 1 mm |  |  |  |  |  |  |  |
|  |  | E32-D82F1(F2) | Liquid-contact model |  |  |  |  |  |  |  |
|  | Glasssubstrate alignment | E32-L16 | 0 to 15 |  |  | 0 to 12 | 0 to 15 |  |  | 0 to 12 |
|  |  | E32-A08 | 10 to 20 |  |  | --- | 10 to 20 |  |  | --- |
|  |  | E32-A07E1(E2) | 15 to 25 |  |  | --- | 15 to 25 |  |  | --- |
|  |  | E32-L66 | 5 to 18 |  | 5 to 16 | --- | 5 to 18 |  | 5 to 14 | --- |
|  | Glasssubstrate Mapping | E32-A09/E32-A09H | 15 to 38 |  |  | --- | 15 to 38 |  |  | --- |
|  |  | E32-A09H2 | 20 to 30 |  |  | --- | 20 to 30 |  |  | --- |
|  | Wafer mapping | E32-A03/E32-A03-1 | 1,150 | 890 | 600 | 250 | 750 | 580 | 380 | 250 |
|  |  | E32-T24S | 1,750 | 1,300 | 870 | 350 | 1,100 | 870 | 580 | 350 |
|  |  | E32-A04/E32-A04-1 | 460 | 340 | 225 | 100 | 300 | 220 | 145 | 100 |

[^2]Green, Blue, and Infrared Light Sources
(Unit: mm)

| Type Model |  |  | E3X-DAG $\square$-S/DAB $\square$-S |  |  |  | E3X-DAH $\square$-S |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | High-resoIution mode | Standard mode | Highspeed mode | Super-highspeed mode | High-resoIution mode | Standard mode | Highspeed mode | Super-highspeed mode |
| Throughbeam models | Standard | E32-T11R/E32-T12R/E32-T15XR/ E32-TC200BR(B4R) | 65 | 50 | 35 | 30 | 280 | 190 | 130 | 55 |
|  |  | $\begin{aligned} & \text { E32-T14LR/E32-T15YR/ } \\ & \text { E32-T15ZR } \end{aligned}$ | 25 | 20 | 22 | 12 | 100 | 75 | 80 | 21 |
|  |  | $\begin{aligned} & \text { E32-TC200/E32-T12/E32-T15X/ } \\ & \text { E32-TC200B(B4) } \end{aligned}$ | 100 | 75 | 50 | 45 | 400 | 280 | 180 | 80 |
|  |  | E32-T14L/E32-T15Y/E32-T15Z | 50 | 40 | 30 | 25 | 240 | 160 | 110 | 45 |
|  | Special beam | E32-T11L/E32-T12L | 150 | 120 | 85 | 75 | 700 | 490 | 320 | 140 |
| Reflective models | Standard | $\begin{aligned} & \text { E32-D11R/E32-D12R/E32-D15XR/ } \\ & \text { E32-DC200BR(B4R) } \end{aligned}$ | 17 | 14 | 10 | 8 | 120 | 90 | 60 | 21 |
|  |  | E32-D14LR | 4.4 | 3.5 | 2.5 | 2.2 | 32 | 24 | 16 | 5.5 |
|  |  | E32-D15YR/E32-D15ZR | 4.2 | 3.3 | 2.2 | 2.1 | 28 | 20 | 13 | 5 |
|  |  | $\begin{array}{\|l} \hline \text { E32-DC200/E32-D15X/ } \\ \text { E32-DC200B(B4) } \\ \hline \end{array}$ | 32 | 25 | 16 | 16 | 200 | 150 | 100 | 35 |
|  |  | E32-D14L | 11 | 9 | 6 | 5.5 | 80 | 60 | 40 | 14 |
|  |  | E32-D15Y/E32-D15Z | 10 | 8 | 5.5 | 5 | 65 | 50 | 33 | 11 |
|  | Special beam | E32-D11L | 44 | 35 | 22 | 22 | 260 | 190 | 130 | 45 |
|  |  | E32-CC200R | 15 | 12 | 8 | 7.5 | 100 | 75 | 50 | 17 |
|  |  | E32-CC200 | 32 | 25 | 16 | 16 | 200 | 150 | 100 | 35 |
|  |  | E32-D32L | 15 | 12 | 8 | 7.5 | 100 | 75 | 50 | 17 |
|  |  | E32-C31/E32-D32 | 7.5 | 6 | 4 | 3.5 | 50 | 37 | 25 | 8.5 |
| Applica-tionspecific models | Label detection | E32-T14 | 320 | 260 | 220 | 160 | 1,800 | 1,200 | 820 | 360 |
|  |  | E32-G14 | 10 |  |  |  | 10 |  |  |  |

Refer to E32 Series for details on Fiber Units.

## Amplifier Units





[^0]:    1 1. Greatly reduced wiring work
    2. Improved space usability due to the unnecessity of relay connectors
    3. Simple stock management due to the unnecessity of distinction between master and slave for amplifiers

[^1]:    *1. The optical fiber for the E32-T17L is 10 m long on each side, so the value is $20,000 \mathrm{~mm}$
    *2. The optical fiber is 2 m long on each side, so the sensing distance is $4,000 \mathrm{~mm}$.

[^2]:    *The optical fiber for the E32-T14 is 2 m long on each side, so the sensing distance is $4,000 \mathrm{~mm}$

