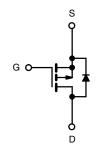


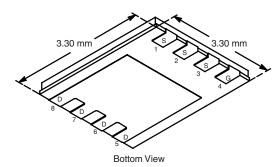
P-Channel 60-V (D-S) MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)		
- 60	0.065 at V _{GS} = - 10 V	- 5.7		
	$0.110 \text{ at V}_{GS} = -4.5 \text{ V}$	- 4.4		


FEATURES

- Halogen-free According to IEC 61249-2-21 Available
- TrenchFET[®] Power MOSFET
- Fast Switching

RoHS COMPLIANT HALOGEN FREE


APPLICATIONS

- Load Switches
- Half-Bridge Motor Drives
- High Voltage Non-Synchronous Buck Converters

P-Channel MOSFET

PowerPAK 1212-8

Ordering Information: Si7415DN-T1-E3 (Lead (Pb)-free)

Si7415DN-T1-GE3 (Lead (Pb)-free and Halogen-free)

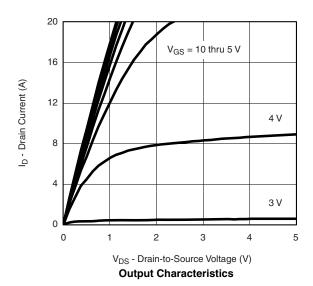
ABSOLUTE MAXIMUM RATINGS	T _A = 25 °C, unles	ss otherwise n	oted			
Parameter		Symbol	10 s	Steady State	Unit	
Drain-Source Voltage		V _{DS}	- 60		V	
Gate-Source Voltage		V _{GS}	± 20			
Out in the Paris Out of (T. 150 20)	T _A = 25 °C	- I _D	- 5.7	- 3.6	^	
Continuous Drain Current (T _J = 150 °C) ^a	T _A = 70 °C		- 4.6	- 2.9		
Pulsed Drain Current		I _{DM}	- 30		Α	
Continuous Source Current (Diode Conduction) ^a	l	I _S	- 3.2	- 1.3		
Maximum Power Dissipation ^a	T _A = 25 °C	P _D	3.8	1.5	W	
	T _A = 70 °C		2.0	0.8		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		00	
Soldering Recommendations (Peak Temperature) ^{b, c}			260		°C	

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^a	t ≤ 10 s	- R _{thJA}	26	33	
	Steady State		65	81	°C/W
Maximum Junction-to-Case (Drain)	Steady State	R_{thJC}	1.9	2.4	

Notes:

- a. Surface Mounted on 1" x 1" FR4 board.
- b. See Solder Profile (www.vishay.com/ppg?73257). The PowerPAK 1212-8 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- c. Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.

Vishay Siliconix


SPECIFICATIONS $T_J = 25$ °C	C, unless o	otherwise noted					
Parameter	Symbol	Test Conditions	Min. Typ.		Max.	Unit	
Static							
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	- 1		- 3	V	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = - 60 V, V _{GS} = 0 V			- 1	μА	
		V_{DS} = - 60 V, V_{GS} = 0 V, T_{J} = 70 °C			- 5		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -10 \text{ V}$	- 20			Α	
	В	V _{GS} = - 10 V, I _D = - 5.7 A		0.054	0.065	Ω	
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -4.4 \text{ A}$		0.090	0.110		
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 15 V, I _D = - 5.7 A		11		S	
Diode Forward Voltage ^a	V_{SD}	I _S = - 3.2 A, V _{GS} = 0 V		- 0.8	- 1.2	V	
Dynamic ^b			•	•			
Total Gate Charge	Q_g			15	25		
Gate-Source Charge	Q_{gs}	$V_{DS} = -30 \text{ V}, V_{GS} = -10 \text{ V}, I_{D} = -5.7 \text{ A}$		4		nC	
Gate-Drain Charge	Q_{gd}			3.2			
Turn-On Delay Time	t _{d(on)}			12	20		
Rise Time	t _r	V_{DD} = - 30 V, R_L = 30 Ω		12	20		
Turn-Off Delay Time	t _{d(off)}	$\text{I}_\text{D}\cong\text{-}\ \text{1}\ \text{A},\ \text{V}_\text{GEN}=\text{-}\ \text{10}\ \text{V},\ \text{R}_\text{g}=\text{6}\ \Omega$		22	35	ns	
Fall Time	t _f			16	25		
Source-Drain Reverse Recovery Time	t _{rr}	I _F = - 3.2 A, dl/dt = 100 A/μs		45	90		

Notes:

- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.
- b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

