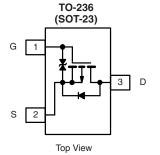
RoHS³

HALOGEN


FREE

P-Channel 60-V (D-S) MOSFET

PRODUCT SUMMARY							
V _{DS} (V)	$R_{DS(on)}(\Omega)$	V _{GS(th)} (V)	I _D (mA)				
- 60	6 at V _{GS} = - 10 V	- 1 to - 3.0	- 185				

Marking Code: 6Kwll 6K = Part Number Code for TP0610K w = Week Code // = Lot Traceability

Ordering Information: TP0610K-T1 TP0610K-T1-E3 (Lead (Pb)-free)

TP0610K-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES

Halogen-free According to IEC 61249-2-21 Available

- High-Side Switching
- Low On-Resistance: 6 Ω
- Low Threshold: 2 V (typ.)
- Fast Swtiching Speed: 20 ns (typ.)
- Low Input Capacitance: 20 pF (typ.)
- 2000 V ESD Protection

APPLICATIONS

- Drivers: Relays, Solenoids, Lamps, Hammers, Display, Memories, Transistors, etc.
- **Battery Operated Systems**
- **Power Supply Converter Circuits**
- Solid-State Relays

BENEFITS

- Ease in Driving Switches
- Low Offset (Error) Voltage
- Low-Voltage Operation
- **High-Speed Circuits**
- Easily Driven without Buffer

ABSOLUTE MAXIMUM RATINGS T _A = 25 °C, unless otherwise noted								
Parameter		Symbol	Limit	Unit				
Drain-Source Voltage		V_{DS}	- 60	V				
Gate-Source Voltage		V _{GS}	± 20					
Continuos Duris Commuta	T _A = 25 °C	1	- 185	mA				
Continuous Drain Current ^a	T _A = 100 °C	l _D	- 115					
Pulsed Drain Current ^b		I _{DM}	- 800					
Down Distinction	T _A = 25 °C	P _D	350	- mW				
Power Dissipation ^a	T _A = 100 °C	' D	140					
Maximum Junction-to-Ambient ^a		R _{thJA}	350	°C/W				
Operating Junction and Storage Temperature Range		T _{J,} T _{stg}	- 55 to 150	°C				

Notes:

- a. Surface Mounted on FR4 board.
- b. Pulse width limited by maximum junction temperature.

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply.

TP0610K

Vishay Siliconix

SPECIFICATIONS $T_A = 25$	°C, unless oth	erwise noted					
Parameter	Symbol		Limits				
		Test Conditions	Min.	Typ. ^a	Max.	Unit	
Static				•			
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = -10 \mu\text{A}$	- 60			V	
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	- 1		- 3.0		
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 10	μΑ	
		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 10 \text{ V}$			± 200	mA	
		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 10 \text{ V}, T_{J} = 85 ^{\circ}\text{C}$			± 500		
		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 5 \text{ V}$			± 100		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = - 60 V, V _{GS} = 0 V			- 25		
		V _{DS} = - 60 V, V _{GS} = 0 V, T _J = 85 °C			- 250		
•	I _{D(on)}	V _{GS} = - 10 V, V _{DS} = - 4.5 V	- 50			mA	
On-State Drain Current ^a		V _{GS} = - 10 V, V _{DS} = - 10 V	- 600				
Drain-Source On-Resistance ^a	R _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -25 \text{ mA}$			10	Ω	
		V _{GS} = - 10 V, I _D = - 500 mA			6		
		V _{GS} = - 10 V, I _D = - 500 mA, T _J =125 °C			9		
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 10 V, I _D = - 100 mA	80			mS	
Diode Forward Voltage	V _{SD}	I _S = - 200 mA, V _{GS} = 0 V			- 1.4	V	
Dynamic				•			
Total Gate Charge	Q_g	V - 20 V V - 15 V		1.7		nC	
Gate-Source Charge	Q_{gs}	$V_{DS} = -30 \text{ V}, V_{GS} = -15 \text{ V}$ $I_{D} \cong -500 \text{ mA}$		0.26			
Gate-Drain Charge	Q_{gd}	1D = 000 m/r		0.46			
Input Capacitance	C _{iss}	V _{DS} = - 25 V, V _{GS} = 0 V f = 1 MHz		23		pF	
Output Capacitance	C _{oss}			10			
Reverse Transfer Capacitance	C _{rss}	1 — 1 IVII 12		5			
Switching ^b	·			•			
Turn-On Time	t _{d(on)}	$V_{DD} = -25 \text{ V}, R_{L} = 150 \Omega$		25		ns	
Turn-Off Time	t _{d(off)}	$I_D \cong$ - 200 mA, V_{GEN} = - 10 V, R_G = 10 Ω		35			

Notes:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

a. Pulse test: PW $\leq 300~\mu s$ duty cycle $\leq 2~\%.$

b. Switching time is essentially independent of operating temperature.