

DS18B20 Programmable Resolution 1-Wire Digital Thermometer

FEATURES

- Unique 1-Wire[®] Interface Requires Only One Port Pin for Communication
- Each Device has a Unique 64-Bit Serial Code Stored in an On-Board ROM
- Multidrop Capability Simplifies Distributed Temperature-Sensing Applications
- Requires No External Components
- Can Be Powered from Data Line; Power Supply Range is 3.0V to 5.5V
- Measures Temperatures from -55°C to +125°C (-67°F to +257°F)
- ± 0.5 °C Accuracy from -10°C to +85°C
- Thermometer Resolution is User Selectable from 9 to 12 Bits
- Converts Temperature to 12-Bit Digital Word in 750ms (Max)
- User-Definable Nonvolatile (NV) Alarm Settings
- Alarm Search Command Identifies and Addresses Devices Whose Temperature is Outside Programmed Limits (Temperature Alarm Condition)
- Available in 8-Pin SO (150 mils), 8-Pin μSOP, and 3-Pin TO-92 Packages
- Software Compatible with the DS1822
- Applications Include Thermostatic Controls, Industrial Systems, Consumer Products, Thermometers, or Any Thermally Sensitive System

PIN CONFIGURATIONS

DESCRIPTION

The DS18B20 digital thermometer provides 9-bit to 12-bit Celsius temperature measurements and has an alarm function with nonvolatile user-programmable upper and lower trigger points. The DS18B20 communicates over a 1-Wire bus that by definition requires only one data line (and ground) for communication with a central microprocessor. It has an operating temperature range of -55°C to +125°C and is accurate to ± 0.5 °C over the range of -10°C to +85°C. In addition, the DS18B20 can derive power directly from the data line ("parasite power"), eliminating the need for an external power supply.

Each DS18B20 has a unique 64-bit serial code, which allows multiple DS18B20s to function on the same 1-Wire bus. Thus, it is simple to use one microprocessor to control many DS18B20s distributed over a large area. Applications that can benefit from this feature include HVAC environmental controls, temperature monitoring systems inside buildings, equipment, or machinery, and process monitoring and control systems.

ORDERING INFORMATION

PART	TEMP RANGE	PIN-PACKAGE	TOP MARK
DS18B20	-55°C to +125°C	3 TO-92	18B20
DS18B20+	-55°C to +125°C	3 TO-92	18B20
DS18B20/T&R	-55°C to +125°C	3 TO-92 (2000 Piece)	18B20
DS18B20+T&R	-55°C to +125°C	3 TO-92 (2000 Piece)	18B20
DS18B20-SL/T&R	-55°C to +125°C	3 TO-92 (2000 Piece)*	18B20
DS18B20-SL+T&R	-55°C to +125°C	3 TO-92 (2000 Piece)*	18B20
DS18B20U	-55°C to +125°C	8 μSOP	18B20
DS18B20U+	-55°C to +125°C	8 μSOP	18B20
DS18B20U/T&R	-55°C to +125°C	8 μSOP (3000 Piece)	18B20
DS18B20U+T&R	-55°C to +125°C	8 μSOP (3000 Piece)	18B20
DS18B20Z	-55°C to +125°C	8 SO	DS18B20
DS18B20Z+	-55°C to +125°C	8 SO	DS18B20
DS18B20Z/T&R	-55°C to +125°C	8 SO (2500 Piece)	DS18B20
DS18B20Z+T&R	-55°C to +125°C	8 SO (2500 Piece)	DS18B20

⁺Denotes a lead-free package. A "+" will appear on the top mark of lead-free packages. T&R = Tape and reel.

PIN DESCRIPTION

PIN			NI A NATE	EUNICOM			
SO	μSOP	TO-92	NAME	FUNCTION			
1, 2, 6, 7, 8	2, 3, 5, 6, 7		N.C.	No Connection			
3	8	3	V_{DD}	Optional V_{DD} . V_{DD} must be grounded for operation in parasite power mode.			
4	1	2	DQ	Data Input/Output. Open-drain 1-Wire interface pin. Also provides power to the device when used in parasite power mode (see the <i>Powering the DS18B20</i> section.)			
5	4	1	GND	Ground			

OVERVIEW

Figure 1 shows a block diagram of the DS18B20, and pin descriptions are given in the *Pin Description* table. The 64-bit ROM stores the device's unique serial code. The scratchpad memory contains the 2-byte temperature register that stores the digital output from the temperature sensor. In addition, the scratchpad provides access to the 1-byte upper and lower alarm trigger registers (T_H and T_L) and the 1-byte configuration register. The configuration register allows the user to set the resolution of the temperature-to-digital conversion to 9, 10, 11, or 12 bits. The T_H, T_L, and configuration registers are nonvolatile (EEPROM), so they will retain data when the device is powered down.

The DS18B20 uses Maxim's exclusive 1-Wire bus protocol that implements bus communication using one control signal. The control line requires a weak pullup resistor since all devices are linked to the bus via a 3-state or open-drain port (the DQ pin in the case of the DS18B20). In this bus system, the microprocessor (the master device) identifies and addresses devices on the bus using each device's unique 64-bit code. Because each device has a unique code, the number of devices that can be addressed on one

^{*}TO-92 packages in tape and reel can be ordered with straight or formed leads. Choose "SL" for straight leads. Bulk TO-92 orders are straight leads only.

ABSOLUTE MAXIMUM RATINGS

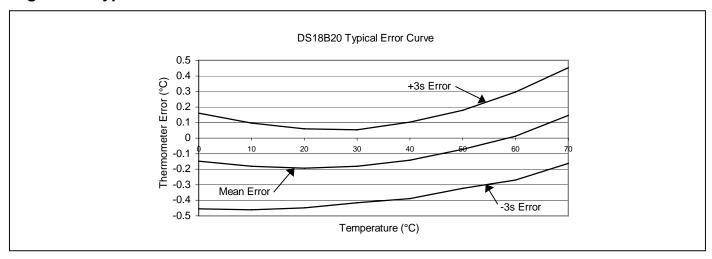
Voltage Range on Any Pin Relative to Ground	0.5V to +6.0V
Operating Temperature Range	55°C to +125°C
Storage Temperature Range	55°C to +125°C
Solder Temperature	

These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

DC ELECTRICAL CHARACTERISTICS (-55°C to +125°C; V_{DD} =3.0V to 5.5V)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	V_{DD}	Local Power	+3.0		+5.5	V	1
Pullup Supply	V	Parasite Power	+3.0		+5.5	V	1,2
Voltage	$ m V_{PU}$	Local Power	+3.0		$V_{ m DD}$		
Thermometer	t	-10° C to $+85^{\circ}$ C			±0.5	°C	3
Error	$t_{\rm ERR}$	-55°C to +125°C			±2		
Input Logic-Low	V_{IL}		-0.3		+0.8	V	1,4,5
	$ m V_{IH}$	Local Power	+2.2		The lower of	V	1, 6
Input Logic High					5.5		
Input Logic-High		Parasite Power	+3.0		or		
					$V_{DD} + 0.3$		
Sink Current	I_{L}	$V_{I/O} = 0.4V$	4.0			mA	1
Standby Current	$I_{ m DDS}$			750	1000	nA	7,8
Active Current	I_{DD}	$V_{\rm DD} = 5V$		1	1.5	mA	9
DQ Input Current	I_{DQ}			5		μΑ	10
Drift				±0.2		°C	11

AC ELECTRICAL CHARACTERISTICS—NV MEMORY


 $(-55^{\circ}\text{C to } +100^{\circ}\text{C}; V_{DD} = 3.0 \text{V to } 5.5 \text{V})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
NV Write Cycle Time	t_{WR}			2	10	ms
EEPROM Writes	N_{EEWR}	-55°C to +55°C	50k			writes
EEPROM Data Retention	$t_{\rm EEDR}$	-55°C to +55°C	10			years

AC ELECTRICAL CHARACTERISTICS (-55°C to +125°C; $V_{DD} = 3.0 \text{V}$ to 5.5V)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS	NOTES
	t _{CONV}	9-bit resolution		93.75		
Temperature Conversion		10-bit resolution		187.5	me	1
Time		11-bit resolution		375	ms	1
		12-bit resolution		750		
Time to Strong Pullup On	4	Start Convert T		10	μs	
Time to Strong Funup On	$t_{ m SPON}$	Command Issued		10		
Time Slot	t_{SLOT}		60	120	μs	1
Recovery Time	t_{REC}		1		μs	1
Write 0 Low Time	$t_{ m LOW0}$		60	120	μs	1
Write 1 Low Time	t_{LOW1}		1	15	μs	1
Read Data Valid	$t_{ m RDV}$			15	μs	1
Reset Time High	t _{RSTH}		480		μs	1
Reset Time Low	t _{RSTL}		480		μs	1,2
Presence-Detect High	t _{PDHIGH}		15	60	μs	1
Presence-Detect Low	$t_{ m PDLOW}$		60	240	μs	1
Capacitance	C _{IN/OUT}			25	pF	

Figure 17. Typical Performance Curve

