
Power Metal Film Resistors

DESCRIPTION

A homogeneous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting wires of electrolytic copper or copper-clad iron are welded to the end-caps. The resistors are coated with a red, nonflammable lacquer which provides electrical, mechanical and climatic protection. This coating is not resistant to aggressive fluxes. The encapsulation is resistant to all cleaning solvents in accordance with "MIL-STD-202E, method 215", and "IEC 60068-2-45".

FEATURES

- Different lead materials for different applications
- Defined interruption behaviour
- · Lead (Pb)-free solder contacts
- Pure tin plating provides compatibility with lead (Pb)-free and lead containing soldering processes
- Compatible with "Restriction of the use of Hazardous Substances" (RoHS) directive 2002/95/EC (issue 2004)

APPLICATIONS

• All general purpose power applications

TECHNICAL SPECIFICATIONS						
			VALUE			
DESCRIPTION	PR01	PR0	2	PR0	3	
	PHUI	Cu-lead	FeCu-lead	Cu-lead	FeCu-lead	
Resistance Range (2)	0.22 Ω to 1 M Ω	0.33 Ω to 1 M Ω	1 Ω to 1 M Ω	0.68 Ω to 1 M Ω	1 Ω to 1 MΩ	
Resistance Tolerance and Series		± 1 % (E24, E96	6 series); ± 5 % (E	24 series) (1)		
Maximum Dissipation at $T_{amb} = 70 ^{\circ}\text{C}$:						
R<1Ω	0.6 W	1.2 W	-	1.6 W	-	
1 Ω ≤ <i>R</i>	1 W	2 W	1.3 W	3 W	2.5 W	
Thermal Resistance (Rth)	135 K/W	75 K/W	115 K/W	60 K/W	75 K/W	
Temperature Coefficient		•	≤ ± 250 x 10 ⁻⁶ /K			
Maximum Permissible Voltage (DC or RMS)	350 V	500 V 750 V		V		
Basic Specifications		IEC 6	0115-1 and 60115	5-4		
Climatic Category (IEC 60068)	55/155/56					
Stability After:						
Load	$\Delta R \text{ max.: } \pm (5 \% R + 0.1 \Omega)$					
Climatic Tests	$\Delta R \text{ max.: } \pm (3 \% R + 0.1 \Omega)$					
Soldering		ΔR ma	x.: ± (1 % R + 0.05	5 Ω)		

Notes

- $^{(1)}$ 1 % tolerance is available for R_n -range from 1 R upwards
- (2) Ohmic values (other than resistance range) are available on request
- R value is measured with probe distance of 24 ± 1 mm using 4-terminal method

12NC INFORMATION

The resistors have a 12-digit numeric code starting with 23 For 5 % tolerance:

- The next 7 digits indicate the resistor type and packing
- The remaining 3 digits indicate the resistance value:
- The first 2 digits indicate the resistance value
- The last digit indicates the resistance decade

For 1 % tolerance:

- The next 6 digits indicate the resistor type and packing
- The remaining 4 digits indicate the resistance value:
 - The first 3 digits indicate the resistance value
 - The last digit indicates the resistance decade

Last Digit of 12NC Indicating Resistance Decade

RESISTANCE DECADE	LAST DIGIT
0.22 to 0.91 Ω	7
1 to 9.76 Ω	8
10 to 97.6 Ω	9
100 to 976 Ω	1
1 to 9.76 kΩ	2
10 to 97.6 kΩ	3
100 to 976 kΩ	4
1 ΜΩ	5

12NC Example

The 12NC for resistor type PR02 with Cu leads and a value of 750 Ω with 5 % tolerance, supplied on a bandolier of 1000 units in ammopack, is: 2306 198 53751.

www.vishay.com For technical questions, contact: filmresistors.leaded@vishay.com

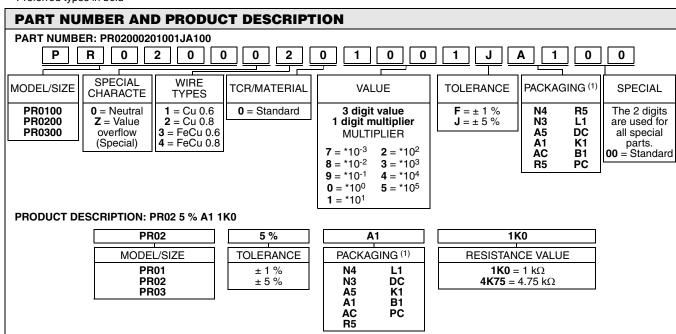
For technical qu

Document Number: 28729 Revision: 21-Feb-08

110

Vishay BCcomponents

12N	12NC - Resistor Type and Packaging (1)									
				ORDERING CODE 23 (BANDOLIER)						
				Α	MMOPACK			REEL		
TYPE	LEAD Ø mm	TOL (%)	DADIAL	TARER		STRAIGH	T LEADS			
		(70)	RADIAL	RADIAL TAPED		52 mm	63 mm	52 mm		
			4000 units	3000 units	5000 units	1000 units	500 units	5000 units		
PR01	Cu 0.6	1	=	-	22 196 1	06 191 2	-	06 191 5		
		5	06 197 03	-	22 193 14	06 197 53	-	06 197 23		
PR02	Cu 0.8	1	=	22 197 2	-	22 197 1	=	06 192 5		
		5	=	06 198 03	-	06 198 53	=	06 198 23		
	FeCu 0.6	5	=	-	-	22 194 54	=	-		
PR03	Cu 0.8	5	=	-	-	-	22 195 14	-		
		1	=	=	-	=	06 199 6	=		
	FeCu 0.6	5	=	=	=	=	22 195 54	=		


Notes:

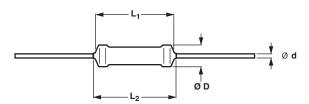
- (1) Other packaging versions are available on request
- · Preferred types in bold

				ORDERING CODE 23	(LOOSE IN BOX)	
TYPE	LEAD Ø	TOL		DOUBLE K	INK	
IYPE	mm	(%)	PITCH = 17.8 mm	PITCH = 25.4 mm	PITCH (2	(3) (4)
			1000 units	500 units	1000 units	500 units
PR01	Cu 0.6	5	22 193 03	_	_	-
	FeCu 0.6	5	22 193 43	_	22 193 53 ⁽²⁾	-
PR02	Cu 0.8	5	22 194 23	_	_	-
	FeCu 0.6	5	22 194 83	_	_	-
	FeCu 0.8	5	_	-	22 194 63 ⁽³⁾	=
PR03	Cu 0.8	5	-	22 195 23	_	-
	FeCu 0.6	5	_	22 195 83	=	=
	FeCu 0.8	5	_	-		22 195 63 ⁽⁴

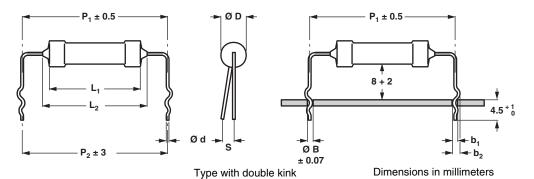
Notes:

- (2) PR01 pitch 12.5 mm
- (3) PR02 pitch 15.0 mm
- (4) PR03 pitch 20.0 mm, with reversed kinking direction as opposed to the drawing for the type with double kink figure
- · Preferred types in bold

Notes:


- (1) Please refer to table PACKAGING for details
- The PART NUMBER is shown to facilitate the introduction of a unified part numbering system for ordering products

Power Metal Film Resistors


PACKAGI	ING		
CODE	PIECES	DESCRIPTION	MODEL/SIZE
N4	4000	Bandolier in ammopack radial taped	PR01
N3	3000	Bandolier in ammopack radial taped	PR02
A5	5000	Bandolier in ammopack straight leads 52 mm	PR01
A1	1000	Bandolier in ammopack straight leads 52 mm	PR01, PR02
AC	500	Bandolier in ammopack straight leads 63 mm	PR03
R5	5000	Bandolier on reel straight leads 52 mm	PR01, PR02
L1	1000	Loose in box with Double Kink, pitch 17.8 mm	PR01, PR02
DC	500	Loose in box with Double Kink, pitch 25.4 mm	PR03
K1	1000	Loose in box with Double Kink, pitch 12.5 mm	PR01
B1	1000	Loose in box with Double Kink, pitch 15.0 mm	PR02
PC	500	Loose in box with Double Kink, pitch 20.0 mm	PR03

DIMENSIONS

Type with straight leads

DIMENSIONS - straight lead type and relevant physical dimensions; see straight leads outline						
TYPE	Ø D _{max.}	Ø D _{max.} L _{1 max.} (mm) (mm)	L _{2 max} .		d um)	
	(mm)		(mm)	Cu	FeCu	
PR01	2.5	6.5	8.5	0.58 ± 0.05	-	
PR02	3.9	10.0	12.0	0.78 ± 0.05	0.58 ± 0.05	
PR03	5.2	16.7	19.5	0.78 ± 0.05	0.58 ± 0.05	

DIME	DIMENSIONS - double kink lead type and relevant physical dimensions; see double kinked outline									
TYPE	LEAD STYLE		Ø d (mm)		b ₂	Ø D _{max} .	P ₁	P ₂	S _{max} .	Ø B
		Cu	FeCu	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PR01	double kink large pitch	0.58 ± 0.05	0.58 ± 0.05	1.10 + 0.25/- 0.20	1.45 + 0.25/- 0.20	2.5	17.8	17.8	2	0.8
FNUI	double kink small pitch	-	0.58 ± 0.05	1.10 + 0.25/- 0.20	1.45 + 0.25/- 0.20	2.5	12.5	12.5	2	0.8
PR02	double kink large pitch	0.78 ± 0.05	0.58 ± 0.05	1.10 + 0.25/- 0.20	1.45 + 0.25/- 0.20	3.9	17.8	17.8	2	0.8
FH02	double kink small pitch	-	0.78 ± 0.05	1.30 + 0.25/- 0.20	1.65 + 0.25/- 0.20	3.9	15.0	15.0	2	1.0
PR03	double kink large pitch	0.78 ± 0.05	0.58 ± 0.05	1.10 + 0.25/- 0.20	1.65 + 0.25/- 0.20	5.2	25.4	25.4	2	1.0
PR03	double kink small pitch	-	0.78 ± 0.05	1.30 + 0.25/- 0.20	2.15 + 0.25/- 0.20	J.2	22.0	20.0	2	1.0

www.vishay.com 112 For technical questions, contact: filmresistors.leaded@vishay.com

MASS PER 100 UNITS					
ТҮРЕ	MASS (g)				
PR01 Cu 0.6 mm	21.2				
PR01 FeCu 0.6 mm	20.7				
PR02 Cu 0.8 mm	50.4				
PR02 FeCu 0.6 mm	40.6				
PR02 FeCu 0.8 mm	49.6				
PR03 Cu 0.8 mm	119.2				
PR03 FeCu 0.6 mm	107.9				
PR03 FeCu 0.8 mm	118.5				

MARKING

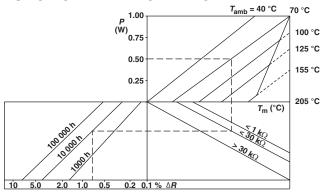
The nominal resistance and tolerance are marked on the resistor using four colored bands in accordance with IEC publication 60062, "Color codes for fixed resistors".

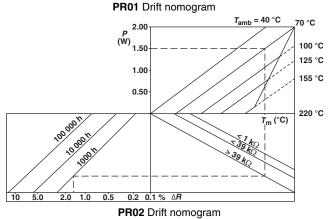
OUTLINES

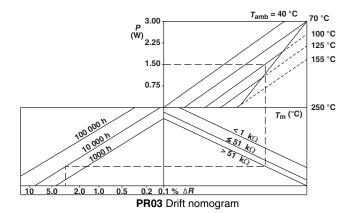
The length of the body (L₁) is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 60294").

MOUNTING

The resistors are suitable for processing on automatic insertion equipment and cutting and bending machines.


MOUNTING PITCH						
TYPE	LEAD STYLE	PIT	СН			
IIFE	LEAD STILE	mm	е			
	straight leads	12.5 ⁽¹⁾	5 ⁽¹⁾			
PR01	radial taped	4.8	2			
FNUI	double kink large pitch	17.8	7			
	double kink small pitch	12.5	5			
	straight leads	15.0 ⁽¹⁾	6 ⁽¹⁾			
PR02	radial taped	4.8	2			
FN02	double kink large pitch	17.8	7			
	double kink small pitch	15.0	6			
	straight leads	23.0 (1)	9 (1)			
PR03	double kink large pitch	25.4	10			
	double kink small pitch	20.0	8			


Note

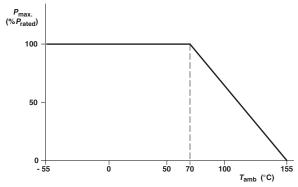

FUNCTIONAL DESCRIPTION PRODUCT CHARACTERIZATION

Standard values of nominal resistance are taken from the E96/E24 series for resistors with a tolerance of \pm 1 % or \pm 5 %. The values of the E96/E24 series are in accordance with "IEC publication 60063".

FUNCTIONAL PERFORMANCE

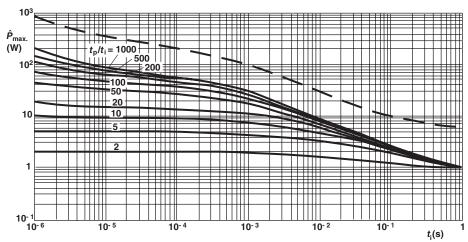
LIMITING VALUES						
TYPE	LEAD MATERIAL	RANGE	LIMITING VOLTAGE (1) (V)	LIMITING POWER (W)		
PR01	Cu	R < 1 Ω	350	0.6		
11101		1 Ω ≤ <i>R</i>	000	1.0		
	Cu	R<1Ω		1.2		
PR02	Cu	1 Ω ≤ <i>R</i>	500	2.0		
	FeCu	1 Ω ≤ <i>R</i>		1.3		
	Cu	R < 1 Ω		1.6		
PR03	Ou	1 Ω ≤ <i>R</i>	750	3.0		
	FeCu	1 Ω ≤ <i>R</i>		2.5		

Note:

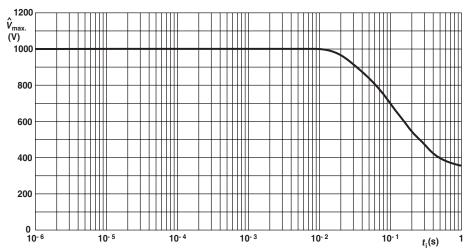

- (1) The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1".
- The maximum permissible hot-spot temperature is 205 °C for PR01, 220 °C for PR02 and 250 °C for PR03.

⁽¹⁾ Recommended minimum value.

Power Metal Film Resistors



The power that the resistor can dissipate depends on the operating temperature.

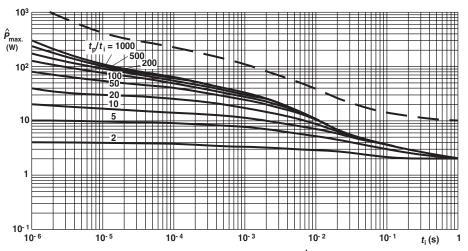


Maximum dissipation ($P_{\text{max.}}$) in percentage of rated power as a function of the ambient temperature (T_{amb})

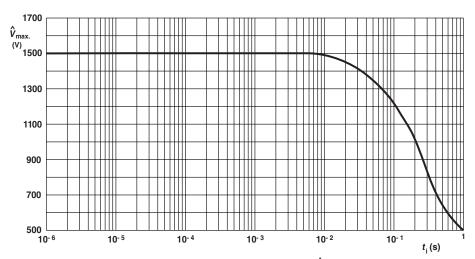
Derating

PR01 Pulse on a regular basis; maximum permissible peak pulse power (\hat{P}_{max}) as a function of pulse duration (t_i)

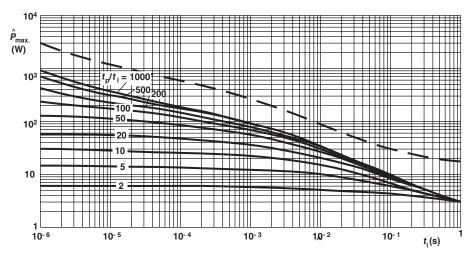
PR01 Pulse on a regular basis; maximum permissible peak pulse voltage $(\hat{V}_{max.})$ as a function of pulse duration (t_i)


Pulse Loading Capabilities

For technical questions, contact: filmresistors.leaded@vishay.com

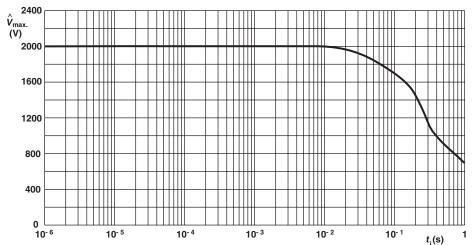

Document Number: 28729 Revision: 21-Feb-08

www.vishay.com


114

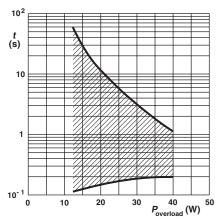
PR02 Pulse on a regular basis; maximum permissible peak pulse power ($\hat{P}_{max.}$) as a function of pulse duration (t_i)

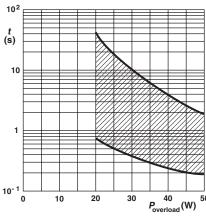
PR02 Pulse on a regular basis; maximum permissible peak pulse voltage $(\hat{V}_{max.})$ as a function of pulse duration (t_i)



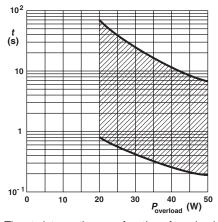
PR03 Pulse on a regular basis; maximum permissible peak pulse power ($P_{\text{max.}}$) as a function of pulse duration (t_i)

Pulse Loading Capabilities

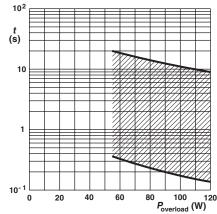

Power Metal Film Resistors


PR03 Pulse on a regular basis; maximum permissible peak pulse voltage (\hat{V}_{max}) as a function of pulse duration (t_i)

Pulse Loading Capabilities


PR01 Time to interruption as a function of overload power for range: $0 R 22 \le R_n < 1 R$

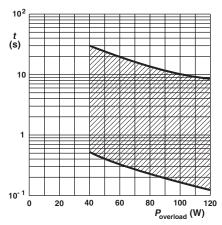
This graph is based on measured data under constant voltage conditions; the data may deviate according to the applications.


PR01 Time to interruption as a function of overload power for range: 1 $R \le R_n \le 15$ R

This graph is based on measured data under constant voltage conditions; the data may deviate according to the applications.

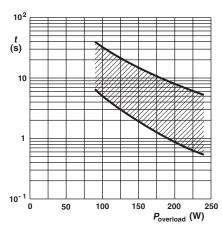
PR01 Time to interruption as a function of overload power for range: 16 $R \le R_n \le 560 R$

This graph is based on measured data under constant voltage conditions; the data may deviate according to the applications.

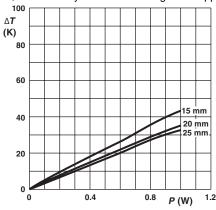


PR02 Time to interruption as a function of overload power for range: $0.33 R \le R_0 < 5 R$

This graph is based on measured data under constant voltage conditions; the data may deviate according to the applications.

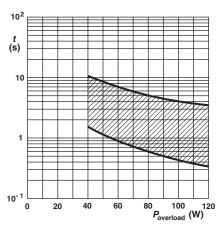

Interruption Characteristics

116


PR02 Time to interruption as a function of overload power for range: $5 R \le R_n < 68 R$

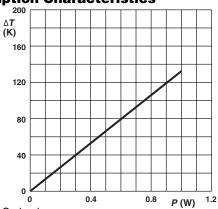
This graph is based on measured data under constant voltage conditions; the data may deviate according to the applications.

PR03 Time to interruption as a function of overload power for range: 0.68 $R \le R_n \le 560 R$

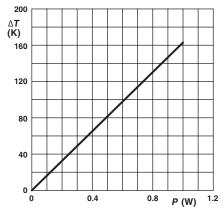

This graph is based on measured data under constant voltage conditions; the data may deviate according to the applications.

Ø 0.6 mm Cu-leads

Minimum distance from resistor body to PCB = 1 mm


PR01 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

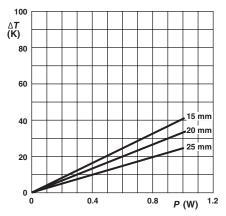
PR02 Time to interruption as a function of overload power for range: $68 R \le R_n \le 560 R$


This graph is based on measured data under constant voltage conditions; the data may deviate according to the applications.

Interruption Characteristics

Ø 0.6 mm Cu-leads

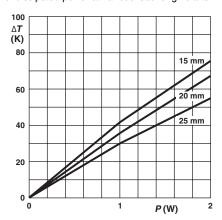
PR01 Hot-spot temperature rise (ΔT) as a function of dissipated power.


Ø 0.6 mm FeCu-leads

PR01 Hot-spot temperature rise (ΔT) as a function of dissipated power.

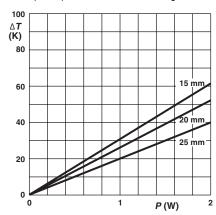
Application Information

Power Metal Film Resistors



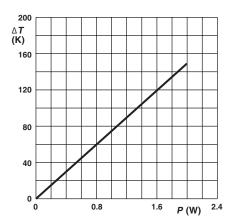
Ø 0.6 mm FeCu-leads

Minimum distance from resistor body to PCB = 1 mm

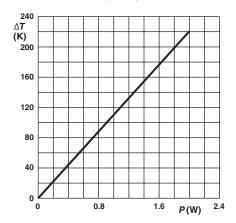

PR01 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

Ø 0.8 mm Cu-leads

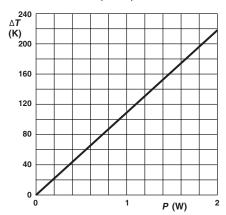
Minimum distance from resistor body to PCB = 1 mm


PR02 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

Ø 0.6 mm FeCu-leads


Minimum distance from resistor body to PCB = 1 mm

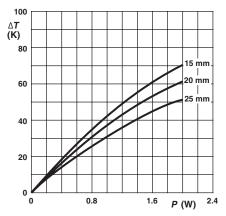
PR02 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.


Ø 0.8 mm Cu-leads

PR02 Hot-spot temperature rise (ΔT) as a function of dissipated power.

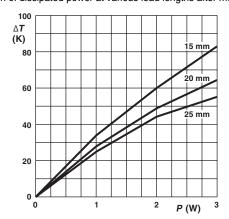
Ø 0.6 mm FeCu-leads

PR02 Hot-spot temperature rise (ΔT) as a function of dissipated power.


Ø 0.8 mm FeCu-leads

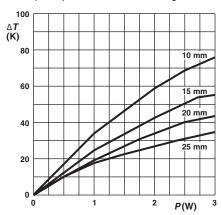
PR02 Hot-spot temperature rise (ΔT) as a function of dissipated power.

Application Information


Vishay BCcomponents

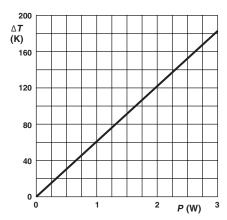
Ø 0.8 mm FeCu-leads

Minimum distance from resistor body to PCB = 1 mm

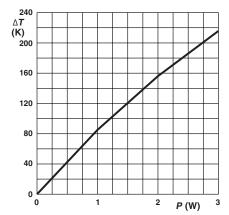

PR02 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

Ø 0.8 mm Cu-leads

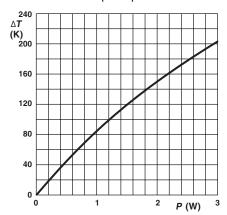
Minimum distance from resistor body to PCB = 1 mm


PR03 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

Ø 0.6 mm FeCu-leads


Minimum distance from resistor body to PCB = 1 mm

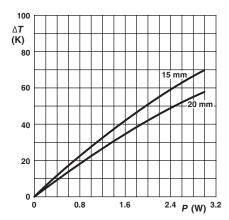
PR03 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.


Ø 0.8 mm Cu-leads

PR03 Hot-spot temperature rise (ΔT) as a function of dissipated power.

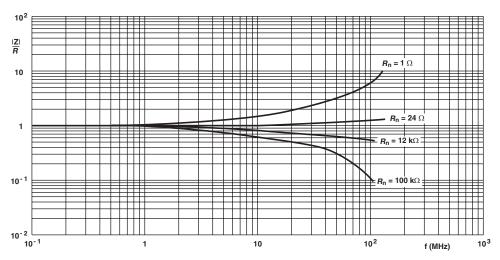
Ø 0.6 mm FeCu-leads

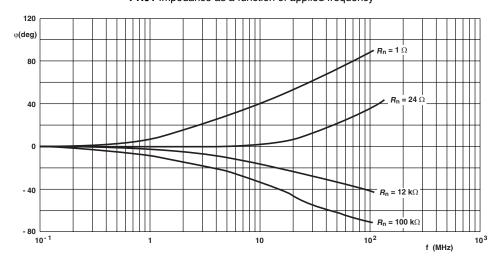
PR03 Hot-spot temperature rise (ΔT) as a function of dissipated power.


Ø 0.8 mm FeCu-leads

PR03 Hot-spot temperature rise (ΔT) as a function of dissipated power.

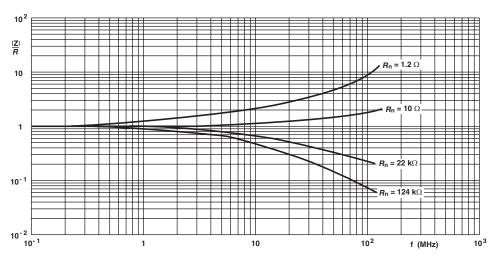
Application Information

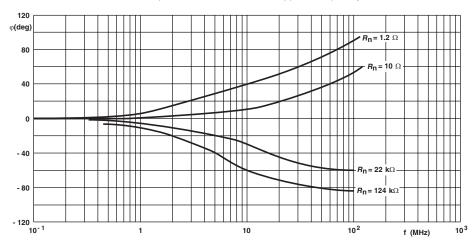

Power Metal Film Resistors



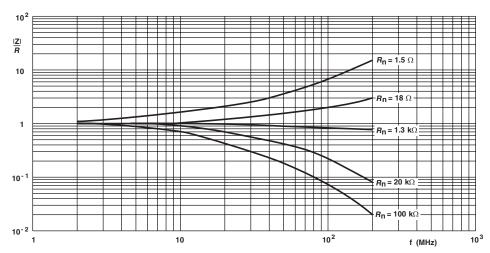
Ø 0.8 mm FeCu-leads Minimum distance from resistor body to PCB = 1 mm

PR03 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.


PR01 Impedance as a function of applied frequency

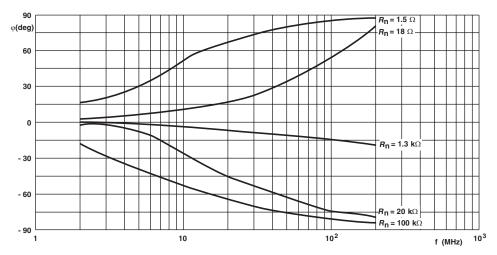

PR01 Phase angle as a function of applied frequency

Application Information



PR02 Impedance as a function of applied frequency

PR02 Phase angle as a function of applied frequency



PR03 Impedance as a function of applied frequency

Application Information

Power Metal Film Resistors

PR03 Phase angle as a function of applied frequency

Application Information

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068-2, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and

under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

In the Test Procedures and Requirements table, tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068-2"; a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

All soldering tests are performed with mildly activated flux.

TEST P	TEST PROCEDURES AND REQUIREMENTS					
IEC 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS		
TESTS IN	ACCORDAN	CE WITH THE SCHEDUL	E OF IEC PUBLICATION 60115-1			
4.4.1		visual examination		no holes; clean surface; no damage		
4.4.2		dimensions (outline)	gauge (mm)	see Straight and Kinked Dimensions tables		
4.5		resistance (refer note on first page for measuring distance)	applied voltage (+ 0/- 10 %): $R < 10 \ \Omega$: 0.1 V $10 \ \Omega \le R < 100 \ \Omega$: 0.3 V $100 \ \Omega \le R < 1 \ k\Omega$: 1 V $1 \ k\Omega \le R < 10 \ k\Omega$: 3 V $10 \ k\Omega \le R < 100 \ k\Omega$: 10 V $100 \ k\Omega \le R < 100 \ k\Omega$: 25 V $R = 1 \ M\Omega$: 50 V	<i>R</i> - <i>R</i> _{nom} : max. ± 5 %		
4.18	20 (Tb)	resistance to soldering heat	thermal shock: 3 s; 350 °C; 3 mm from body	$\Delta R \text{ max.: } \pm (1 \% R + 0.05 \Omega)$		
4.29	45 (Xa)	component solvent resistance	isopropyl alcohol or H ₂ O followed by brushing in accordance with "MIL 202 F"	no visual damage		
4.17	20 (Ta)	solderability	2 s; 235 °C	good tinning; no damage		
4.7		voltage proof on insulation	maximum voltage 500 V _{RMS} during 1 min; metal block method	no breakdown or flashover		

www.vishay.com

For technical questions, contact: filmresistors.leaded@vishay.com

Vishay BCcomponents

TEST P	TEST PROCEDURES AND REQUIREMENTS						
IEC 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS			
4.16	21 (U)	robustness of terminations:					
4.16.2	21 (Ua1)	tensile all samples	load 10 N; 10 s	number of failures: < 1 x 10 ⁻⁶			
4.16.3	21 (Ub)	bending half number of samples	load 5 N; 4 x 90°	number of failures: < 1 x 10 ⁻⁶			
4.16.4	21 (Uc)	torsion other half of samples	3 x 360° in opposite directions	no damage ΔR max.: $\pm (0.5 \% R + 0.05 \Omega)$			
4.20	29 (Eb)	bump	3 x 1500 bumps in three directions; 40 g	no damage ΔR max.: $\pm (0.5 \% R + 0.05 \Omega)$			
4.22	6 (Fc)	vibration	frequency 10 to 500 Hz; displacement 1.5 mm or acceleration 10 g; three directions; total 6 h (3 x 2 h)	no damage ΔR max.: ± (0.5 % R + 0.05 Ω)			
4.19	14 (Na)	rapid change of temperature	30 min at LCT and 30 min at UCT; 5 cycles	no visual damage PR01 : ΔR max.: \pm (1 % R + 0.05 Ω) PR02 : ΔR max.: \pm (1 % R + 0.05 Ω) PR03 : ΔR max.: \pm (2 % R + 0.05 Ω)			
4.23		climatic sequence:					
4.23.3	30 (Db)	damp heat (accelerated) 1 st cycle					
4.23.6	30 (Db)	damp heat (accelerated) remaining cycles	6 days; 55 °C; 95 to 98 % RH	R_{ins} min.: 10 ³ M Ω ΔR max.: \pm (3 % R + 0.1 Ω)			
4.24.2	3 (Ca)	damp heat (steady state) (IEC)	56 days; 40 °C; 90 to 95 % RH; loaded with 0.01 P _n (IEC steps: 4 to 100 V)	R_{ins} min.: 1000 MΩ Δ R max.: ± (3 % R + 0.1 Ω)			
4.25.1		endurance (at 70 °C)	1000 h; loaded with P _n or V _{max.} ; 1.5 h ON and 0.5 h OFF	ΔR max.: \pm (5 % R + 0.1 Ω)			
4.8.4.2		temperature coefficient	at 20/LCT/20 °C and 20/UCT/20 °C (TC x 10 ⁻⁶ /K)	≤ ± 250			
OTHER T	OTHER TESTS IN ACCORDANCE WITH IEC 60115 CLAUSES AND IEC 60068 TEST METHOD						
4.17	20 (Tb)	solderability (after ageing)	8 h steam or 16 h 155 °C; leads immersed 6 mm for 2 \pm 0.5 s in a solder bath at 235 \pm 5 °C	good tinning (≥ 95 % covered); no damage			
4.6.1.1		insulation resistance	maximum voltage (DC) after 1 min; metal block method	R_{ins} min.: $10^4M\Omega$			
	nendment to 5-1, Jan. '87	pulse load		see Pulse Load Capabilities graphs			

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com Revision: 18-Jul-08