

DS1220Y 16k Nonvolatile SRAM

FEATURES

- 10 years minimum data retention in the absence of external power
- Data is automatically protected during power loss
- Directly replaces 2k x 8 volatile static RAM or EEPROM
- Unlimited write cycles
- Low-power CMOS
- JEDEC standard 24-pin DIP package
- Read and write access times as fast as 100 ns
- Full $\pm 10\%$ operating range
- Optional industrial temperature range of -40°C to +85°C, designated IND

PIN ASSIGNMENT

Α7	1	24 🔲	VCC
A6	\square_2	23	A8
A5	<u>3</u>	22 🔳	<u>A9</u>
A4	□ 4	21	WE
A3	I 5	20 🛮	OE
A2	6	19 🛮	<u>A1</u> 0
A1	□ 7	18 🛮	CE
A0	■ 8	17 🔳	DQ7
DQ0	■ 9	16 ■	DQ6
DQ1	1 0	15	DQ5
DQ2	1 1	14 🔳	DQ4
GND	1 2	13 🛮	DQ3

24-Pin ENCAPSULATED PACKAGE 720-mil EXTENDED

PIN DESCRIPTION

A0-A10	 Address Inputs
DQ0-DQ7	- Data In/Data Out
CE	- Chip Enable
$\overline{ ext{WE}}$	- Write Enable
\overline{OE}	- Output Enable
V_{CC}	- Power (+5V)
GND	- Ground

DESCRIPTION

The DS1220Y 16k Nonvolatile SRAM is a 16,384-bit, fully static, nonvolatile RAM organized as 2048 words by 8 bits. Each NV SRAM has a self-contained lithium energy source and control circuitry that constantly monitor V_{CC} for an out-of-tolerance condition. When such a condition occurs, the lithium energy source is automatically switched on and write protection is unconditionally enabled to prevent data corruption. The NV SRAM can be used in place of existing 2k x 8 SRAMs directly conforming to the popular bytewide 24-pin DIP standard. The DS1220Y also matches the pinout of the 2716 EPROM or the 2816 EEPROM, allowing direct substitution while enhancing performance. There is no limit on the number of write cycles that can be executed and no additional support circuitry is required for microprocessor interfacing.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Ground -0.3V to +7.0V

Operating Temperature 0°C to 70°C; -40°C to +85°C for IND parts Storage Temperature -40°C to +70°C; -40°C to +85°C for IND parts

Soldering Temperature +260°C for 10 seconds Caution: Do Not Reflow (Wave or Hand Solder Only)

This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

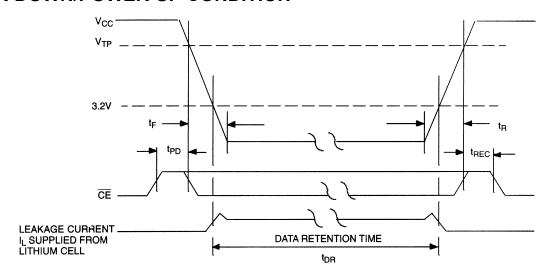
RECOMMENDED DC OPERATING CONDITIONS

(T_A: See Note 10)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Power Supply Voltage	V_{CC}	4.5	5.0	5.5	V	
Input Logic 1	$V_{ m IH}$	2.2		V_{CC}	V	
Input Logic 0	$V_{ m IL}$	0.0		+0.8	V	

DC ELECTRICAL CHARACTERISTICS $(T_A : See Note 10; V_{CC} = 5V \pm 10\%)$

	Д		• 66			
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Leakage Current	$ m I_{IL}$	-1.0		+1.0	μΑ	
I/O Leakage Current	I_{IO}	-1.0		+1.0	μΑ	
$\overline{\text{CE}} \ge V_{\text{IH}} \le V_{\text{CC}}$						
Output Current @ 2.4V	I_{OH}	-1.0			mA	
Output Current @ 0.4V	I_{OL}	2.0			mA	
Standby Current $\overline{\text{CE}} = 2.2\text{V}$	I _{CCS1}		3.0	7.0	mA	
Standby Current $\overline{\text{CE}} = V_{\text{CC}} - 0.5V$	I _{CCS2}		2.0	4.0	mA	
Operating Current t _{CYC} = 200ns	I _{CCO1}			75	mA	
(Commercial)						
Operating Current t _{CYC} =200ns	I_{CCO1}			85	mA	
(Industrial)						
Write Protection Voltage	V_{TP}		4.25		V	


CAPACITANCE $(T_A = 25^{\circ}C)$

					\ -	A /
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Capacitance	C_{IN}		5	10	pF	
Input/Output Capacitance	$C_{I/O}$		5	12	рF	

AC ELECTRICAL CHARACTERISTICS (T_A : See Note 10: $V_{CC} = 5.0V \pm 10\%$)

AC ELECTRICAL CHARACTERISTICS					(TA. See Note To, VCC				$-3.00 \pm 10\%$		
PARAMETER	SYM	DS1220Y-100 DS1220Y-120		DS1220Y-150		DS1220Y-200		UNITS	NOTE		
FARANIETER	SINI	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOIL
Read Cycle Time	t_{RC}	100		120		150		200		ns	
Access Time	t _{ACC}		100		120		150		200	ns	
OE to Output Valid	t _{OE}		50		60		70		100	ns	
CE to Output Valid	t _{CO}		100		120		150		200	ns	
OE or CE to Output Active	t _{COE}	5		5		5		5		ns	5
Output High-Z from Deslection	t _{OD}		35		35		35		35	ns	5
Output Hold from Address Change	t _{OH}	5		5		5		5		ns	
Write Cycle Time	twc	100		120		150		200		ns	
Write Pulse Width	t_{WP}	75		90		100		150		ns	3
Address Setup Time	t_{AW}	0		0		0		0		ns	
Write Recovery Time	t _{WR1}	0 10		0 10		0 10		0 10		ns ns	12 13
Output High-Z from $\overline{\text{WE}}$	t _{ODW}		35		35		35		35	ns	5
Output Active from WE	t _{OEW}	5		5		5		5		ns	5
Data Setup Time	$t_{ m DS}$	40		50		60		80		ns	4
Data Hold Time	t _{DH1}	0 10		0 10		0 10		0 10		ns ns	12 13

POWER-DOWN/POWER-UP CONDITION

SEE NOTE 11

POWER-DOWN/POWER-UP TIMING

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
$\overline{\text{CE}}$ at V_{IH} before Power-Down	t_{PD}	0		μs	11
V _{CC} Slew from V _{TP} to 0V	$t_{ m F}$	100		μs	
V _{CC} Slew from 0V to V _{TP}	t_{R}	0		μs	
CE at V _{IH} after Power-Up	$t_{ m REC}$		2	ms	

WARNING:

Under no circumstance are negative undershoots, of any amplitude, allowed when device is in battery backup mode.

NOTES:

- 1. WE is high for a read cycle.
- 2. $\overline{OE} = V_{IH}$ or V_{IL} . If $\overline{OE} = V_{IH}$ during a write cycle, the output buffers remain in a high impedance state.
- 3. t_{WP} is specified as the logical AND of \overline{CE} and \overline{WE} . t_{WP} is measured from the latter of \overline{CE} or \overline{WE} going low to the earlier of \overline{CE} or \overline{WE} going high.
- 4. t_{DS} are measured from the earlier of \overline{CE} or \overline{WE} going high.
- 5. These parameters are sampled with a 5 pF load and are not 100% tested.

- 6. If the CE low transition occurs simultaneously with or later than the WE low transition in write cycle 1, the output buffers remain in a high impedance state during this period.
- 7. If the \overline{CE} high transition occurs prior to or simultaneously with the \overline{WE} high transition, the output buffers remain in a high impedance state during this period.
- 8. If $\overline{\text{WE}}$ is low or the $\overline{\text{WE}}$ low transition occurs prior to or simultaneously with the $\overline{\text{CE}}$ low transition, the output buffers remain in a high impedance state during this period.
- 9. Each DS1220Y is marked with a 4-digit date code AABB. AA designates the year of manufacture. BB designates the week of manufacture. The expected t_{DR} is defined as starting at the date of manufacture.
- 10. All AC and DC electrical characteristics are valid over the full operating temperature range. For commercial products, this range is 0°C to 70°C. For industrial products (IND), this range is -40°C to +85°C.
- 11. In a power-down condition the voltage on any pin may not exceed the voltage of V_{CC} .
- 12. t_{WR1} , t_{DH1} are measured from \overline{WE} going high.
- 13. t_{WR2} , t_{DH2} are measured from \overline{CE} going high.
- 14. DS1220Y modules are recognized by Underwriters Laboratories (UL®) under file E99151 (R).

DC TEST CONDITIONS

Outputs open.

All voltages are referenced to ground.

AC TEST CONDITIONS

Output Load: 100pF + 1TTL Gate

Input Pulse Levels: 0-3.0V

Timing Measurement Reference Levels

Input:1.5V Output: 1.5V

Input Pulse Rise and Fall Times: 5ns

ORDERING INFORMATION/SELECTOR GUIDE

PART	TEMP RANGE	SUPPLY TOLERANCE	PIN-PACKAGE	SPEED GRADE (ns)
DS1220Y-100	0°C to +70°C	5V ± 10%	24 / 720 EMOD	100
DS1220Y-100+	0° C to $+70^{\circ}$ C	$5V \pm 10\%$	24 / 720 EMOD	100
DS1220Y-100IND	-40°C to +85°C	$5V \pm 10\%$	24 / 720 EMOD	100
DS1220Y-100IND+	-40°C to +85°C	5V ± 10%	24 / 720 EMOD	100
DS1220Y-120	0°C to +70°C	5V ± 10%	24 / 720 EMOD	120
DS1220Y-120+	0°C to +70°C	5V ± 10%	24 / 720 EMOD	120
DS1220Y-150	0°C to +70°C	5V ± 10%	24 / 720 EMOD	150
DS1220Y-150+	0°C to +70°C	5V ± 10%	24 / 720 EMOD	150
DS1220Y-200	0°C to +70°C	5V ± 10%	24 / 720 EMOD	200
DS1220Y-200+	0°C to +70°C	5V ± 10%	24 / 720 EMOD	200
DS1220Y-200IND	-40°C to +85°C	5V ± 10%	24 / 720 EMOD	200
DS1220Y-200IND+	-40°C to +85°C	5V ± 10%	24 / 720 EMOD	200

⁺ Denotes a lead-free/RoHS-compliant package.