
Panasonic ideas for life

LOW PROFILE SAFETY RELAY WITH FORCIBLY GUIDED CONTACTS

SFN4D

RELAY

Features

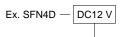
- Relay complies with EN 50205, Type B
- Polarized magnet system with snap action function
- Extremely small total power loss
 Nominal coil power consumption of 390mW
 Double contacts with low contact resistance, e.g. [(6A)² × 2.5mΩ] × 4NO = 360mW
- Relay height, 14.5mm
- Reinforced insulation according to EN 50178
 between coil-contacts and contacts-contacts
 - rated voltage of the circuits 230 / 400V or 277 / 480Vrms
 - rated impulse voltage of 6kV \rightarrow clearance \geq 5.5 mm
 - pollution degree 2 \rightarrow creepage distance \geq 5.5mm

SPECIFICATIONS

Contact

Contact configuration (a = normally open / NO, b = normally closed / NC)	4a2b
Contact material	AgSnO ₂ , with Au flash
Contact resistance (initial at 6V DC, 1A) Typical contact resistance	≤30mΩ 2.5mΩ
Max. switching capacity	6A/8A ^{*1} 250V AC
Max. switching voltage	500V AC / DC
Min. switching voltage / min. switching current	Reference 10V / 10mA
Pick-up / drop-out / bounce time (approx. values at U _{nominal})	23 / 6 ^{*2} / 2ms
Mechanical life	10 ⁷ ops

Coil


Operate / release	75% / 25%
and holding at 20°C (% of U _{nominal}) ^{*3}	min. 48%
Pick-up/nominal power consumption	219-236 / 390-420mW

*1 See "ELECTRICAL LIFE (Reference Data)*1" on page 2.

*2 Without diode

- *3 See also "REFERENCE DATA" on page 3.
- *4 Contact interruption <10µs
- *5 According to EN 61810-1: 2004, table 2

ORDERING INFORMATION

Coil voltage (DC) 5, 9, 12, 16, 18, 21 24, 36, 48, 60

Notes: 1) Standard packing; Tube: 10 pcs. Case 100 pcs. 2) Other coil voltage available upon request

ds_61408_0000_en_sfn4d: 141106D

Characteristics

Onaraotoristios	
Max. switching frequency (without load)	5Hz
Permissible ambient temperature at nominal power consumption ^{*3}	-25°C to 92°C
Upper temperature limit	105°C
Test voltage: open contact / contact-contact / contact-coil	2500 / 4000 / 5000V _{rms}
Insulation resistance at 500V DC (initial)	10 ⁹ Ω
Shock resistance (11ms) NO/NC ^{*4}	20 / 15G
Vibration resistance 10 – 200 Hz (10 – 55 Hz, amplitude 2 mm) ^{*4}	10G
Degree of protection	RT III ^{*5}
Unit weight	42g

Important: Relay characteristics may be influenced by:

• strong external magnetic fields

· magnetic conductive materials near the relay

• narrow top-to-top mounting (printed surface to printed surface)

SFN4D

COIL DATA (at 20°C)

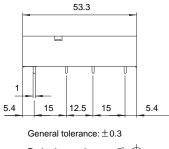
Part number	Coil nominal voltage V DC	Operate voltage ^{*1} V DC	Release voltage ^{*1} V DC	Coil resistance Ω (±10%, 20°C)
SFN4D-DC5V	5	3.75	1.25	64.1
SFN4D-DC9V	9	6.75	2.25	207.7
SFN4D-DC12V	12	9.00	3.00	369.2
SFN4D-DC16V	16	12.00	4.00	656.4
SFN4D-DC18V	18	13.5	4.50	830.8
SFN4D-DC21V	21	15.75	5.25	1130.8
SFN4D-DC24V	24	18.00	6.00	1476.9
SFN4D-DC36V	36	27.00	9.00	3085.7
SFN4D-DC48V	48	36.00	12.00	5485.7
SFN4D-DC60V	60	45.00	15.00	8571.4

*1 Operate and release voltage at different temperatures, see "REFERENCE DATA" on page 3, coil voltage characteristics.

SWITCHING CAPABILITY

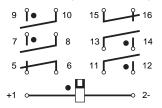
- Making / breaking capacities according to EN 60947-5-1: 2000, table 4 / 5; AC15: 6A 230V AC / DC13: 6A 24V DC
- Endurance / overload test according to UL 508 16 edition, sections 42 / 43; 6A 250V AC / 6A 24V DC; B300 / R300; File E120782

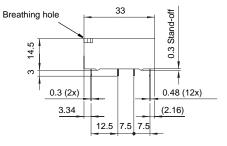
ELECTRICAL LIFE (Reference Data)^{*1}

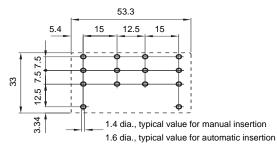

Voltage	Current (A)	Load type	Frequency	Duty cycle	No. of contacts	No. of ops.
230V AC	8	AC 1	0.25Hz	25%	4	85,000
230V AC	6	AC 1	0.25Hz	25%	4	200,000
230V AC	2.5	AC 1	0.25Hz	25%	4	1,500,000
230V AC	60 / 6	AC 15	0.20Hz	20%	3	40,000
24V DC	6	DC 1	0.25Hz	25%	4	2,000,000
250V DC	0.27	DC 13	0.10Hz	10%	4	>1,000,000*2

1 Test conditions: Room temperature, breathing hole closed, dielectric strength according to

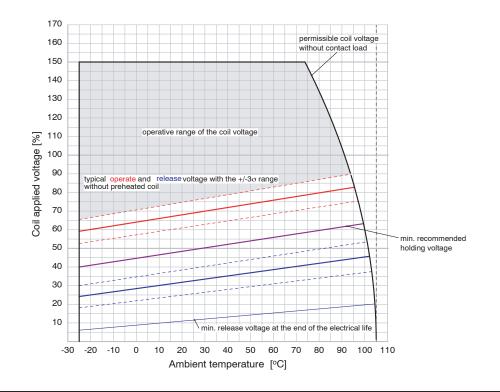
*2 Has to be confirmed


DIMENSIONS

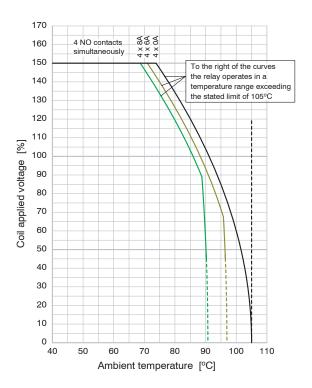

Outer dimensions


Projection mode:

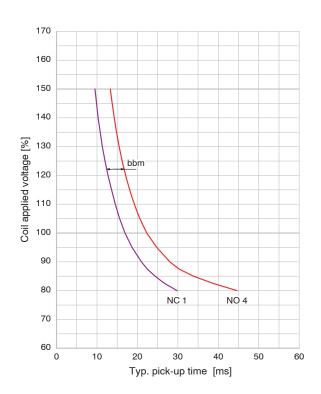
Schematic (Bottom view)



PC board pattern (Bottom view)

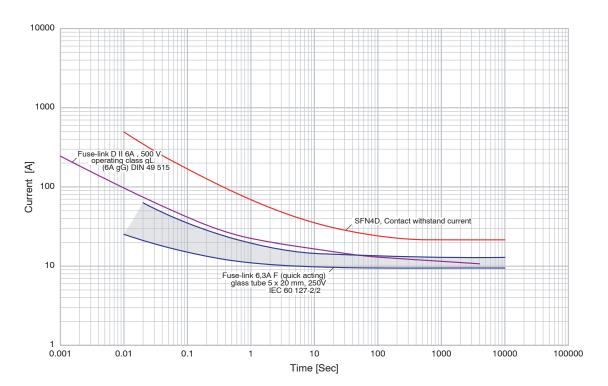


REFERENCE DATA

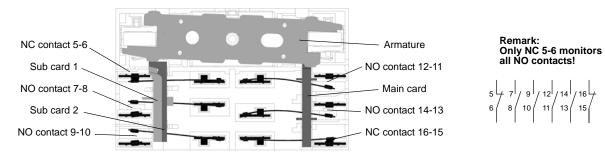


Thermic operating range


Switching time in relation to coil excitement at 20°C


ds_61408_0000_en_sfn4d: 141106D

SFN4D REFERENCE DATA, continued


Load limit curve

Time / current characteristic

APPLICATION NOTES The SFN4D Safety Relay

Legend for interpreting contact conditions

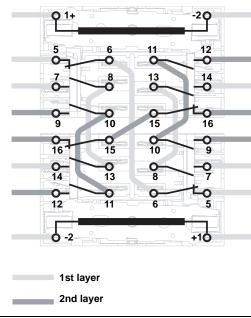
Contact	ontact NC (Normally Closed)			NO (Normally Open)				
Condition	Closed	Fully open	Open	Open or closed	Closed	Fully open	Open	Open or closed
Symbol	- -	ļ	Ļ	الم : . ا		ļ	l l	0
Contact gap	0	Maximum (~1.5mm)	>0.5mm (forcibly guided)	Not defined	0	Maximum (~1.5mm)	>0.5mm (forcibly guided)	Not defined

The SFN4D under normal operating conditions

Condition	Illustration of Relay State	Condition of Contacts
 Coil deenergized. Armature in deenergized position. NC contacts closed. NO contacts have a contact gap of approx. 1.5mm. 		$5 \begin{array}{c ccccccccccccccccccccccccccccccccccc$
 Coil energized. Armature in energized position. NO contacts closed. NC contacts have a contact gap of approx. 1.5mm. 		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

SFN4D

Condition	Illustration of Relay State	Condition of Contacts
 NC 5-6 welded. Coil energized. Armature nearly in deenergized position. 		 All NO contacts are forcibly guided. The NO contact gaps are min. 0.5mm. For NC 16-15, the contact condition is not defined.
 NC 16-15 welded. Coil energized. Armature nearly in deenergized position. 		- All NO contacts are forcibly guided. 5 7 9 12 14 16 6 8 10 11 11 13 15 7 For NC 5-6, the contact condition is not defined.
 NO 12-11 welded. Coil deenergized. Armature nearly in energized position. 		- All (both) NC contacts are forcibly guided. - The NC contact gaps are m 0.5mm. - For all NO contacts, the contact condition is not defined.
 NO 14-13 welded. Coil deenergized. Armature in nearly energized position. 		- All (both) NC contacts are forcibly guided. - The NC contact gaps are m 0.5mm. - For all NO contacts, the contact condition is not defined.
 NO 7-8 welded. Coil deenergized. Armature in deenergized position. 		 NC 16-15 is closed!! All non-welded NO contacts show their max. contact gap. NC 5-6 forcibly guided to the welded contact by sub card The contact gap is min. 0.5mm.
 NO 9-10 welded. Coil deenergized. Armature in deenergized position. 		- NC 16-15 is closed!! - All non-welded NO contacts show their max. contact gap. - NC 5-6 forcibly guided to the welded contact by sub card The contact gap is min. 0.5mm.


6

Failure modes, application examples

1) Feedback loop, 2) Self-holding circuit, 3) Safety circuit, 4) Auxilliary contacts

1. Self-holding circuit, three safety circuits $ \begin{array}{c c} 5 & 7 & 9 & 12 & 14 & 16 \\ \hline K1 & 6 & 8 & 10 & 11 & 13 & 15 \\ \hline & & & & & & \\ \end{array} $	One contact welded, e.g. NO 9-10 of K1.	Condition of contacts at deenergized coil $K1 \begin{array}{c} 5 \\ 6 \\ 6 \\ 8 \\ 13 \\ 11 \\ 12 \\ 9 \\ 7 \\ 14 \\ 12 \\ 9 \\ 7 \\ 14 \\ 12 \\ 9 \\ 7 \\ 16 \\ 15 \\ 16 \\ 15 \\ 16 \\ 15 \\ 16 \\ 15 \\ 16 \\ 15 \\ 16 \\ 15 \\ 16 \\ 15 \\ 16 \\ 16$
K2 6 13 11 10 8 15 14 12 9 7 16 1) 2) 2) 3) 3) 3) 4)	One contact welded, e.g. NO 12-11 of K2.	Condition of contacts at deenergized coil
2.1. Four safety circuits K1 $5 \begin{bmatrix} 7 \\ 8 \end{bmatrix} + 9 \\ 10 \end{bmatrix} + 12 + 14 \\ 13 \end{bmatrix} + 16 \\ 15 \end{bmatrix} + 15 \end{bmatrix}$	One contact welded, e.g. NO 9-10 of K1.	Condition of contacts at deenergized coil $ \mathbf{K1} \begin{array}{c} 5 \\ 6 \\ 6 \\ 8 \\ 13 \\ 11 \\ 12 \\ 11 \\ 10 \\ 8 \\ 11 \\ 10 \\ 8 \\ 15 \\ 5 \\ 14 \\ 12 \\ 9 \\ 7 \\ 16 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$
K2 $\begin{pmatrix} 6 & 13 & 11 & 10 & 8 & 15 \\ 5 & 14 & 12 & 9 & 7 & 16 \\ 1 & 3 & 3 & 3 & 3 & 3 & 4 \end{pmatrix}$ (see wiring example, p. 8)	One contact welded, e.g. NO 12-11 of K2.	Condition of contacts at deenergized coil K1 $5 + 7^{0} 9^{0} 12^{0} 14^{0} 16^{0} + 16^{0} + 16^{0} + 10^{0} + 11^{0} + 13^{0} + 15^{0} + 13^{$
2.2. Two safety circuits K1 $5 \begin{bmatrix} 7\\ 8\\ 10 \end{bmatrix} + 12 \begin{bmatrix} 14\\ 13\\ 15 \end{bmatrix} + 16 \begin{bmatrix} 16\\ 13\\ 11\\ 12 \end{bmatrix} + 14 \begin{bmatrix} 16\\ 15\\ 15 \end{bmatrix} + 12 \end{bmatrix} + 12 \begin{bmatrix} 16\\ 15\\ 15 \end{bmatrix} + 12 \begin{bmatrix} $	Both contacts of one path are welded, e.g. NO 7-8 and NO 14-13. A safety circuit needs two paths in this failure mode. The contacts 9-10, 12-11, and 14-13 of K1 interrupt the load.	Condition of contacts at deenergized coil K1 $5 \sqrt{7} \sqrt{9} \sqrt{9} \sqrt{12} \sqrt{14} \sqrt{16} \sqrt{16} \sqrt{16} \sqrt{16} \sqrt{16} \sqrt{16} \sqrt{11} \sqrt$
	Both contacts of one path are welded, e.g. NO 9-10 and NO 12-11. A safety circuit needs two paths in this failure mode. The contacts 7-8, 12-11, and 14-13 of K1 interrupt the load.	Condition of contacts at deenergized coil K1 $5 - 7 \sqrt{9} \sqrt{9} \sqrt{12} 14 \sqrt{16} \sqrt{16} \sqrt{12} \sqrt{11} \sqrt{16} \sqrt{16} \sqrt{11} \sqrt{11} \sqrt{13} \sqrt{15} \sqrt{16} \sqrt{11} \sqrt{11} \sqrt{13} \sqrt{15} \sqrt{16} \sqrt{11} \sqrt{12} \sqrt{16} 1$

Wiring for application examples 2.1 and 2.2

For Cautions for Use, see Relay Technical Information.