LOW PROFILE
SAFETY RELAY CONTACTS

Features

- Relay complies with EN 50205, Type B
- Polarized magnet system with snap action function
- Extremely small total power loss
- Nominal coil power consumption of 390 mW
- Double contacts with low contact resistance,
e.g. $\left[(6 A)^{2} \times 2.5 \mathrm{~m} \Omega\right] \times 4 \mathrm{NO}=360 \mathrm{~mW}$
- Relay height, 14.5 mm
- Reinforced insulation according to EN 50178
- between coil-contacts and contacts-contacts
- rated voltage of the circuits $230 / 400 \mathrm{~V}$ or 277 / 480Vrms - rated impulse voltage of $6 \mathrm{kV} \rightarrow$ clearance $\geq 5.5 \mathrm{~mm}$ - pollution degree $2 \rightarrow$ creepage distance $\geq 5.5 \mathrm{~mm}$

SPECIFICATIONS

Contact	
Contact configuration (a = normally open / NO, $\mathrm{b}=$ normally closed / NC)	4 a 2 b
Contact material	AgSnO_{2}, with Au flash
Contact resistance (initial at 6V DC, 1A) Typical contact resistance	$\leq 30 \mathrm{~m} \Omega$
Max. switching capacity	$2.5 \mathrm{~m} \Omega$
Max. switching voltage	$5 \mathrm{~A} / 8 \mathrm{~A}^{\star 1} 250 \mathrm{~V}$ AC
Min. switching voltage / min. switching current	Reference $10 \mathrm{~V} / 10 \mathrm{~mA}$
Pick-up / drop-out / bounce time (approx. values at Unominal)	$23 / 6^{\star 2} / 2 \mathrm{~ms}$
Mechanical life	$10^{7} \mathrm{ops}$

Coil

Operate / release and holding at $20^{\circ} \mathrm{C}\left(\% \text { of } U_{\text {nominal }}\right)^{\star 3}$	$75 \% / 25 \%$ min. 48\%
Pick-up/nominal power consumption	$219-236 / 390-420 \mathrm{~mW}$

Characteristics

Max. switching frequency (without load)	5 Hz
Permissible ambient temperature at nominal power consumption ${ }^{* 3}$	$-25^{\circ} \mathrm{C}$ to $92^{\circ} \mathrm{C}$
Upper temperature limit	$105^{\circ} \mathrm{C}$
Test voltage: open contact / contact-contact / contact-coil	$\begin{aligned} & 2500 / 4000 / \\ & 5000 \mathrm{~V}_{\mathrm{rms}} \end{aligned}$
Insulation resistance at 500V DC (initial)	$10^{9} \Omega$
Shock resistance (11ms) NO/NC ${ }^{* 4}$	20 / 15G
Vibration resistance $10-200 \mathrm{~Hz}(10-55 \mathrm{~Hz}$, amplitude 2 mm$)^{*} 4$	10G
Degree of protection	RT III*5
Unit weight	42g

Important: Relay characteristics may be influenced by:

- strong external magnetic fields
- magnetic conductive materials near the relay
- narrow top-to-top mounting (printed surface to printed surface)
1 See "ELECTRICAL LIFE (Reference Data) ${ }^{ 1 "}$ on page 2.
*2 Without diode
*3 See also "REFERENCE DATA" on page 3.
*4 Contact interruption $<10 \mu \mathrm{~s}$
*5 According to EN 61810-1: 2004, table 2

ORDERING INFORMATION

Notes: 1) Standard packing; Tube: 10 pcs. Case 100 pcs.
2) Other coil voltage available upon request

COIL DATA (at $20^{\circ} \mathrm{C}$)

Part number	Coil nominal voltage $V \mathrm{DC}$	Operate voltage ${ }^{\star 1} \mathrm{~V}$ DC	Release voltage ${ }^{\star 1} \vee \mathrm{DC}$	Coil resistance $\left(\pm 10 \%, 20^{\circ} \mathrm{C}\right)$
SFN4D-DC5V	5	3.75	1.25	64.1
SFN4D-DC9V	9	6.75	2.25	207.7
SFN4D-DC12V	12	9.00	3.00	369.2
SFN4D-DC16V	16	12.00	4.00	656.4
SFN4D-DC18V	18	13.5	4.50	830.8
SFN4D-DC21V	21	15.75	5.25	1130.8
SFN4D-DC24V	24	18.00	6.00	1476.9
SFN4D-DC36V	36	27.00	9.00	3085.7
SFN4D-DC48V	48	36.00	12.00	5485.7
SFN4D-DC60V	60	45.00	15.00	8571.4

*1 Operate and release voltage at different temperatures, see "REFERENCE DATA" on page 3, coil voltage characteristics

SWITCHING CAPABILITY

- Making / breaking capacities according to EN 60947-5-1: 2000, table 4 / 5; AC15: 6A 230V AC / DC13: 6A 24V DC
- Endurance / overload test according to UL 50816 edition, sections 42 / 43; 6A 250V AC / 6A 24V DC; B300 / R300; File E120782

ELECTRICAL LIFE (Reference Data)* ${ }^{* 1}$

Voltage	Current (A)	Load type	Frequency	Duty cycle	No. of contacts	No. of ops.
230 V AC	8	AC 1	0.25 Hz	25%	4	85,000
230 V AC	6	AC 1	0.25 Hz	25%	4	200,000
230 V AC	2.5	AC 1	0.25 Hz	25%	4	
230 V AC	$60 / 6$	AC 15	0.20 Hz	20%	3	40,000
24 V DC	6	DC 1	0.25 Hz	25%	4	2,000
250 V DC	0.27	DC 13	0.10 Hz	10%	4	

*1 Test conditions: Room temperature, breathing hole closed, dielectric strength according to EN61810-1:2004.
*2 Has to be confirmed

DIMENSIONS

Outer dimensions

General tolerance: ± 0.3
Projection mode: \leftrightarrows (

Schematic (Bottom view)

PC board pattern (Bottom view)

Coil voltage characteristics

Thermic operating range

Switching time in relation to coil excitement at $20^{\circ} \mathrm{C}$

Load limit curve

Time / current characteristic

APPLICATION NOTES

The SFN4D Safety Relay

Remark:
Only NC 5-6 monitors all NO contacts!

Legend for interpreting contact conditions

Contact	NC (Normally Closed)				NO (Normally Open)			
Condition	Closed	Fully open	Open	Open or closed	Closed	Fully open	Open	Open or closed
Symbol	$\}$	\downarrow	$\begin{aligned} & L \\ & \{ \end{aligned}$	$\stackrel{L}{1}$	1	1	1	\%
Contact gap	0	Maximum ($\sim 1.5 \mathrm{~mm}$)	$>0.5 \mathrm{~mm}$ (forcibly guided)	Not defined	0	Maximum ($\sim 1.5 \mathrm{~mm}$)	$\begin{gathered} >0.5 \mathrm{~mm} \\ \text { (forcibly guided) } \end{gathered}$	Not defined

The SFN4D under normal operating conditions

Condition	Illustration of Relay State	Condition of Contacts
- Coil deenergized. - Armature in deenergized position. - NC contacts closed. - NO contacts have a contact gap of approx. 1.5mm.		
- Coil energized. - Armature in energized position. - NO contacts closed. - NC contacts have a contact gap of approx. 1.5mm.		

SFN4D
The SFN4D safety relay with welded contacts \square

Condition	Illustration of Relay State	Condition of Contacts	
- NC 5-6 welded. - Coil energized. - Armature nearly in deenergized position.			- All NO contacts are forcibly guided. - The NO contact gaps are min. 0.5 mm . - For NC 16-15, the contact condition is not defined.
- NC 16-15 welded. - Coil energized. - Armature nearly in deenergized position.			- All NO contacts are forcibly guided. - The NO contact gaps are min. 0.5 mm . - For NC 5-6, the contact condition is not defined.
- NO 12-11 welded. - Coil deenergized. - Armature nearly in energized position.			- All (both) NC contacts are forcibly guided. - The NC contact gaps are min. 0.5 mm . - For all NO contacts, the contact condition is not defined.
- NO 14-13 welded. - Coil deenergized. - Armature in nearly energized position.			- All (both) NC contacts are forcibly guided. - The NC contact gaps are min. 0.5 mm . - For all NO contacts, the contact condition is not defined.
- NO 7-8 welded. - Coil deenergized. - Armature in deenergized position.			- NC 16-15 is closed!! - All non-welded NO contacts show their max. contact gap. - NC 5-6 forcibly guided to the welded contact by sub card 1. The contact gap is min. 0.5 mm .
- NO 9-10 welded. - Coil deenergized. - Armature in deenergized position.			- NC 16-15 is closed!! - All non-welded NO contacts show their max. contact gap. - NC 5-6 forcibly guided to the welded contact by sub card 2. The contact gap is min. 0.5 mm .

Failure modes, application examples

1. Self-holding circuit, three safety circuits	One contact welded, e.g. NO 9-10 of K1.	Condition of contacts at deenergized coil
 1) 2) 3) 3) 4)	One contact welded, e.g. NO 12-11 of K2.	Condition of contacts at deenergized coil
2.1. Four safety circuits	One contact welded, e.g. NO 9-10 of K1.	Condition of contacts at deenergized coil
K2 13 11 10 8 15 5 14 12 9 7 16 1) 3) 3) 3) 4) (see wiring example, p. 8)	One contact welded, e.g. NO 12-11 of K2.	Condition of contacts at deenergized coil
2.2. Two safety circuits	Both contacts of one path are welded, e.g. NO 7-8 and NO 14-13. A safety circuit needs two paths in this failure mode. The contacts 9-10, 12-11, and 14-13 of K1 interrupt the load.	Condition of contacts at deenergized coil
1) 3) 3) 4) (see wiring example, p. 8)	Both contacts of one path are welded, e.g. NO 9-10 and NO 12-11. A safety circuit needs two paths in this failure mode. The contacts $7-8,12-11$, and 14-13 of K1 interrupt the load.	Condition of contacts at deenergized coil

Wiring for application examples 2.1 and 2.2

For Cautions for Use, see Relay Technical Information.

