Photologic® Optical Flag Switch OPB685, OPB685-3, OPB686, OPB687, OPB688
 OPB695, OPB696, OPB697, OPB698 Series

OPTEK Technology

Each OPB685 and OPB695 series flag switch consists of an infrared emitting diode and a monolithic integrated circuit that incorporates a photodiode, a linear amplifier and a Schmitt trigger. A lever arm actuated flag interrupts the light beam, which switches the output between states that can readily drive logic gates.

The OPB695 series is designed to easily snap mount into a $0.037^{\prime \prime} \pm 0.001^{\prime \prime}(0.940 \mathrm{~mm} \pm 0.025 \mathrm{~mm})$ thick material with a rectangular opening of $0.320^{\prime \prime} \pm 0.003^{\prime \prime} \times 0.472^{\prime \prime}(8.13 \mathrm{~mm} \times 11.99 \mathrm{~mm})$ minimum. Insertion into the punched side of metal is recommended.
Devices in these series feature TTL/LSTTL compatible logic level output that can drive up to 10 TTL loads over a voltage range from 4.5 V to 16 V .

Customized lever arms and spring torques can be designed for specific applications for each of the devices.
Custom electrical, wire, cabling and connectors are available. Contact your local representative or OPTEK for more information.

Applications:

- Mechanical switch replacement
- Speed indication (tachometer)
- Mechanical limit indication
- Edge sensing

RoHS
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPB695, OPB696, OPB697, OPB698 Series

OPB685, OPB685-3, OPB686, OPB687, OPB688

OPB695, OPB696, OPB697, OPB698

Part Number	Max. Torque (Grams)
OPB685	1.5
OPB685-3	3.0
OPB686	1.5
OPB687	1.5
OPB688	1.5
OPB695	1.5
OPB696	1.5
OPB697	1.5
OPB698	1.5

Torque is measured at the end of the arm from the resting position to the switching point of the flag

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Photologic® Optical Flag Switch OPB685, OPB685-3, OPB686, OPB687, OPB688
 OPB695, OPB696, OPB697, OPB698 Series

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Storage \& Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Soldering Temperature [1/16 inch $(1.6 \mathrm{~mm})$ from the case for 5 sec. with soldering iron $]^{(1)}$	$260^{\circ} \mathrm{C}$

Input Diode

Reverse Voltage	2.0 V
Continuous Forward Current	50 mA
Peak Forward Current	3.0 A
Total Device Power Dissipation ${ }^{(2)}$	100 mW

Output Photologic ${ }^{\circledR}$

Supply Voltage, V_{cc}	18 V
Duration of Output Short to V_{cc}	1 second
Voltage at Output	30 V
Low Level Output Current (sinking)	16 mA
Power Dissipation $^{(3)(4)}$	240 mW

Notes:
(1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
(2) Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(3) Derate linearly $2.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ (OPB680, OPB680-20, OPB690Z).
(4) Derate linearly $2.50 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ (OPB685, OPB686, OPB687, OPB688, OPB695, OPB696, OPB697, OPB698).

OPB685 and OPB695 Series

OPB686, OPB696 Buffered Open-Collector

OPB688, OPB698 Inverted Open-Collector

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Photologic® Optical Flag Switch OPB685, OPB685-3, OPB686, OPB687, OPB688
 OPB695, OPB696, OPB697, OPB698 Series

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Input Diode

V_{F}	Forward Voltage	-	-	1.6	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=3 \mathrm{~V}$

Output Photologic ${ }^{\circledR}$ Sensor

$\mathrm{V}_{\text {cc }}$	Operating DC Supply Voltage OPB685 Series OPB695-698A OPB695-698B OPB695-698C	$\begin{gathered} 4.5 \\ 4.5 \\ 8.0 \\ 13.5 \end{gathered}$	$\begin{gathered} - \\ 5.0 \\ 12.0 \\ 15.0 \end{gathered}$	$\begin{gathered} 16.0 \\ 8.0 \\ 13.5 \\ 16.0 \end{gathered}$	V	
I_{CC}	Operating DC Supply Voltage OPB695-698A/B/C	-	20	30	mA	
$\mathrm{I}_{\mathrm{CLL}}$	Low Level Supply Current: Buffered 10k Pull-Up OPB685 Buffered Open-Collector OPB686	-	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$ (no load on output)
	$\begin{array}{ll}\text { Inverted 10k Pull-Up } & \text { OPB687 } \\ \text { Inverted Open-Collector } & \text { OPB688 }\end{array}$		$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	mA	$\mathrm{V}_{C C}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (no load on output)
ICCH	High Level Supply Current: Buffered 10k Pull-Up OPB685 Buffered Open-Collector OPB686	-	5.0	12	mA	$\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (no load on output)
	Inverted 10k Pull-Up OPB687 Inverted Open-Collector OPB688	-	4.0	12	mA	$\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$ (no load on output)
V_{OL}	Low Level Output Voltage: Buffered 10k Pull-Up OPB685 OPB686 Buffered Open-Collector OPB6695 OPB696A/B/C		- - -	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=8.5 \mathrm{~V} \text { to } 13 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=13.5 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$
	Inverted 10k Pull-Up OPB685 Inverted Open-Collector OPB686 OPB695 OPB696A/B/C	- - -	- - -	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=8.5 \mathrm{~V} \text { to } 13 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=13.5 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OH }}$	High Level Output Voltage: Buffered 10k Pull-Up	$\begin{gathered} V_{\mathrm{CC}} \\ -1.5 \end{gathered}$	-	-	V	$\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Inverted 10k Pull-Up Inverted Open-Collector	$\begin{array}{r} V_{C C} \\ -1.5 \end{array}$	-	-	V	$\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$
IOH	High Level Output Voltage: Buffered Open-Collector OPB686 OPB696A OPB696B OPB696C			$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CH}}=30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=8.5 \mathrm{~V} \text { to } 13 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=13.5 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V} \end{aligned}$
	Inverted 10k Pull-Up OPB688 OPB698A OPB698B OPB698C			$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CH}}=30 \mathrm{~V}^{(1)} \\ & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}^{(1)} \\ & \mathrm{V}_{\mathrm{CC}}=8.5 \mathrm{~V} \text { to } 13 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}^{(1)} \\ & \mathrm{V}_{\mathrm{CC}}=13.5 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}^{(1)} \end{aligned}$

Notes:
(1) Test requires lever arm in "blocked" position.

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Output Photologic® ${ }^{\circledR}$ Sensor (continued)

$\mathrm{I}_{\mathrm{F}(+)}$	LED Positive-Going Threshold Current OPB685-688	0.1	1.8	10	mA	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{F}(+) \mathrm{l}} \mathrm{IF}_{(-)}$	Hysteresis OPB685/688	1.0	1.2	1.6	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	-	30	-	ns	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \text { or } 10 \mathrm{~mA} \\ & R_{\mathrm{L}}=300 \Omega, \mathrm{DC}=50 \% \\ & \mathrm{f}=10 \mathrm{kHz} \end{aligned}$
$t_{\text {PLLH }}{ }_{\text {PHL }}$	Propagation Delay Low-High \& HighLow:	-	$\begin{aligned} & 1(\mathrm{LH}) \\ & 2(\mathrm{HL}) \end{aligned}$	-	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$	
	Inverter, 10k Pull-Up OPB687 Inverter, Open-Collector OPB688	-	$\begin{aligned} & 2_{(\mathrm{LH})} \\ & \mathbf{1}_{(\mathrm{HL})} \end{aligned}$	-	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$	

Notes:
(1) Test requires lever arm in "blocked" position.

