FEATURES:

- 0.5 MICRON CMOS Technology
- High-speed, low-power CMOS replacement for ABT functions
- Typical tsK(0) (Output Skew) < 250ps
- Low input and output leakage $\leq 1 \mu \mathrm{~A}$ (max.)
- ESD > 2000V per MIL-STD-883, Method 3015; > 200 V using machine model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Vcc $=5 \mathrm{~V} \pm 10 \%$
- Balanced Output Drivers ($\pm 24 \mathrm{~mA})$
- Reduced system switching noise
- Typical VOLP (Output Ground Bounce) $<0.6 \mathrm{~V}$ at $\mathrm{VcC}=5 \mathrm{~V}$, $\mathrm{T} A=25^{\circ} \mathrm{C}$
- Available in SSOP package

DESCRIPTION:

The FCT162260TTri-PortBus Exchangers are high-speed 12-bit latched bus multiplexers/transceivers for use in high-speed microprocessor applications. These Bus Exchangers supportmemory interleaving with latched outputs on the Bports and address multiplexingwith latchedinputs on the Bports.
The Tri-PortBus Exchangerhas three 12-bitports. Data may be transferred betweenthe A portandeitherlboth of the Bports. The latch enable (LE1B, LE2B, LEA1B andLEA2B) inputs control data storage. When alatch-enable inputis high, the latch is transparent. When a latch-enable inputis low, the dataat the input is latched and remains latched until the latchenable inputis returned high. Independent output enables ($\overline{\mathrm{OE} 1 \mathrm{~B}}$ and $\overline{\mathrm{EE} 2 \mathrm{~B}}$) allow reading from one port while writing to the other port.

The FCT162260T has balanced output drive with current limiting resistors. This offers low ground bounce, minimal undershoot, and controlled outputfall times-reducing the need for external seriesterminating resistors.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

PIN CONFIGURATION

OEA	$\square 1$

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +7	V
VTERM $^{(3)}$	Terminal Voltage with Respect to GND	-0.5 to Vcc +0.5	V
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
lout	DC Output Current	-60 to +120	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. All device terminals except FCT162XXX Output and I/O terminals.
3. Output and I/O terminals terminals for FCT162XXX.

CAPACITANCE ($\left.\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Typ.	Max.	Unit
CIN	Input Capacitance	VIN $=0 \mathrm{~V}$	3.5	6	pF
COUT	Output Capacitance	VOUT $=0 \mathrm{~V}$	3.5	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Signal	I/0	Description
A(1:12)	I/O	Bidirectional Data Port A. Usually connected to the CPU's Address/Data bus.
1B(1:12)	I/O	Bidirectional Data Port 1B. Connected to the even path or even bank of memory.
2B(1:12)	I/O	Bidirectional Data Port2B. Connected to the odd path or odd bank of memory.
LEA1B	I	Latch Enable Input for A-1B Latch. The Latch is open when LEA1B is HIGH. Data from the A-port is latched on the HIGH to LOW transition of LEA1B.
LEA2B	I	Latch Enable Input for A-2B Latch. The Latch is open when LEA2B is HIGH. Data from the A-Port is latched on the HIGH to LOW transition of LEA2B.
LE1B	I	Latch Enable Input for 1B-A Latch. The Latch is open when LE1B is HIGH. Data from the 1B-Port is latched on the HIGH to LOW transition of LE1B
LE2B	1	Latch Enable Input for 2B-A Latch. The Latch is open when LE2B is HIGH. Data from the A-Port is latched on the HIGH to LOW transition of LE2B.
SEL	1	1B or 2B Path Selection. When HIGH, SEL enables data transfer from 1B Port to A Port. When LOW, SEL enables data transfer from 2B Port to A Port.
$\overline{\mathrm{O}} \overline{\mathrm{E}} \overline{\mathrm{A}}$	I	Output Enable for A Port (Active LOW).
$\overline{\text { OE1B }}$	I	Output Enable for 1B Port (Active LOW).
$\overline{\text { OE2B }}$	1	Output Enable for 2B Port (Active LOW).

FUNCTION TABLES(1)

Inputs						Output
1B	2B	SEL	LE1B	LE2B	$\overline{\mathrm{O}} \mathrm{E} \overline{\mathrm{A}}$	A
H	X	H	H	X	L	H
L	X	H	H	X	L	L
X	X	H	L	X	L	$\mathrm{A}^{(1)}$
X	H	L	X	H	L	H
X	L	L	X	H	L	L
X	X	L	X	L	L	$\mathrm{A}^{(1)}$
X	X	X	X	X	H	Z

Inputs						
A	LEA1B	LEA2B	$\overline{\text { OE1B }}$	OE2B	1B	2B
H	H	H	L	L	H	H
L	H	H	L	L	L	L
H	H	L	L	L	H	$\mathrm{B}^{(1)}$
L	H	L	L	L	L	$\mathrm{B}^{(1)}$
H	L	H	L	L	$\mathrm{B}^{(1)}$	H
L	L	H	L	L	$\mathrm{B}^{(1)}$	L
X	L	L	L	L	$\mathrm{B}^{(1)}$	$\mathrm{B}^{(1)}$
X	X	X	H	H	Z	Z
X	X	X	L	H	Active	Z
X	X	X	H	L	Z	Active
X	X	X	L	L	Active	Active

NOTES:

1. Output level before the indicated steady-state input conditions were established.
2. $\mathrm{H}=\mathrm{H}$ GH Voltage Level

L = LOW Voltage Level
X = Don't Care
Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH Level		2	-	-	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		-	-	0.8	V
11 H	Input HIGH Current (Input pins) ${ }^{(5)}$	Vcc = Max.	$\mathrm{VI}=\mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
	Input HIGH Current (1/O pins) ${ }^{(5)}$			-	-	± 1	
IIL	Input LOW Current (Input pins) ${ }^{(5)}$		$\mathrm{VI}=\mathrm{GND}$	-	-	± 1	
	Input LOW Current (I/O pins) ${ }^{(5)}$			-	-	± 1	
lozH	High Impedance Output Current (3-State Output pins) ${ }^{(5)}$	$V C C=$ Max .	$\mathrm{Vo}=2.7 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
IOZL			$\mathrm{Vo}=0.5 \mathrm{~V}$	-	-	± 1	
VIK	Clamp Diode Voltage	$\mathrm{VcC}=\mathrm{Min} ., \mathrm{lin}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
los	Short Circuit Current	$\mathrm{Vcc}=\mathrm{Max} ., \mathrm{Vo}=\mathrm{GND}^{(3)}$		-80	-140	-250	mA
VH	Input Hysteresis	-		-	100	-	mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	$\begin{aligned} & \text { Vcc }=\text { Max. } \\ & \text { VIN }=\text { GND or Vcc } \end{aligned}$		-	5	500	$\mu \mathrm{A}$

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$	Min.	Typ. ${ }^{(2)}$	Max.	Unit	
IODL	Output LOWCurrent	$\mathrm{VCC}=5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VIH}$ or VIL, $\mathrm{VO}=1.5 \mathrm{~V}^{(3)}$	60	115	200	mA	
IODH	Output HIGH Current	$\mathrm{VCC}=5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VIH}$ or VIL, $\mathrm{VO}=1.5 \mathrm{~V}^{(3)}$	-60	-115	-200	mA	
VOH	Output HIGH Voltage	$\mathrm{VCC}=\mathrm{Min}$ $\mathrm{VIN}=\mathrm{VIH}$ or VIL	$\mathrm{IOH}=-24 \mathrm{~mA}$	2.4	3.3	-	V
VoL	Output LOWVoltage	$\mathrm{VCC}=\mathrm{Min}$ $\mathrm{VIN}=\mathrm{VIH} \mathrm{or} \mathrm{VIL}$	$\mathrm{IOH}=24 \mathrm{~mA}$	-	0.3	0.55	V

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.
4. Duration of the condition can not exceed one second.
5. This test limit for this parameter is $\pm 5 \mu \mathrm{~A}$ at $\mathrm{T} A=-55^{\circ} \mathrm{C}$.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
$\Delta \mathrm{lcc}$	Quiescent Power Supply Current TTL Inputs HIGH	$\begin{aligned} & \mathrm{VCC}=\mathrm{Max} . \\ & \mathrm{VIN}=3.4 \mathrm{~V}^{(3)} \end{aligned}$		-	0.5	1.5	mA
ICCD	Dynamic Power Supply Current(4)	Vcc = Max. Outputs Open One Output Port Enabled LExx = Vcc One Input Bit Togging One Output Bit Toggling 50\% Duty Cycle	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	60	100	$\begin{gathered} \mu \mathrm{A} / \\ \mathrm{MHz} \end{gathered}$
Ic	Total Power Supply Current(6)	VCC = Max. Outputs Open $\mathrm{fi}=10 \mathrm{MHz}$	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	0.6	1.5	mA
		50\% Duty Cycle One Output Port Enabled LExx = Vcc One Input Bit Togging One Output Bit Toggling	$\begin{aligned} & \mathrm{VIN}=3.4 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	0.9	2.3	
		$V C C=M a x .$ Outputs Open $\mathrm{fi}=2.5 \mathrm{MHz}$ 50\% Duty Cycle One Output Port Enabled LExx = Vcc Twelve Input Bit Togging Twelve Output Bit Toggling	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	1.8	$3.5{ }^{(5)}$	
			$\begin{aligned} & \hline \mathrm{VIN}=3.4 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	4.8	$12.5{ }^{(5)}$	

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input $(V / \mathbb{N}=3.4 \mathrm{~V})$. All other inputs at Vcc or GND .
4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
6. IC = lQuIESCENT + linputs + IDYNamic
$\mathrm{IC}=\mathrm{ICC}+\Delta \mathrm{ICC} D \mathrm{DHNT}+\mathrm{ICCD}(\mathrm{fcPNCP} / 2+\mathrm{fiNi})$
ICC = Quiescent Current (Iccl, IcCH and Iccz)
$\Delta \mathrm{ICC}=$ Power Supply Current for a TTL High Input $(\mathrm{VIN}=3.4 \mathrm{~V})$
DH = Duty Cycle for TTL Inputs High
NT = Number of TTL Inputs at Dh
ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)
fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)
NCP = Number of Clock Inputs at fcp
fi = Input Frequency
$\mathrm{Ni}=$ Number of Inputs at fi

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter	Condition ${ }^{(1)}$	FCT162260AT		FCT162260CT		FCT162260ET		Unit
			Min. ${ }^{(2)}$	Max	Min. ${ }^{(2)}$	Max	Min. ${ }^{(2)}$	Max	
tPLH	Propagation Delay	$\begin{aligned} & \mathrm{CL}=50 \mathrm{pF} \\ & \mathrm{RL}=500 \Omega \end{aligned}$	1.5	5.2	1.5	4.7	1.5	3.6	ns
tPLH tPHL	Propagation Delay 1 Bx to Ax or 2 Bx to Ax		1.5	5.6	1.5	5	1.5	3.6	ns
$\begin{array}{\|l\|} \hline \text { tPLH } \\ \text { tPHL } \end{array}$	PropagationDelay LExB to Ax		1.5	5.2	1.5	4.7	1.5	4	ns
$\begin{array}{\|l\|l\|} \hline \text { tPLH } \\ \text { tPHL } \end{array}$	Propagation Delay LEA1B to 1Bx or LEA2B to 2Bx		1.5	4.7	1.5	4.4	1.5	4	ns
$\begin{array}{\|l\|} \hline \text { tPLH } \\ \text { tPHLL } \end{array}$	PropagationDelay SEL to Ax		1.5	5.2	1.5	4.7	1.5	4	ns
$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { tPZH } \\ \text { tPZL } \end{array}$	OutputEnable Time $\overline{\mathrm{OEA}}$ to $\mathrm{Ax}, \overline{\mathrm{OE} 1 \mathrm{~B}}$ or 1 BX , or $\overline{\mathrm{OE} 2 \mathrm{~B}}$ to 2 Bx		1.5	5.7	1.5	5.1	1.5	4.4	ns
tPHZ tPLZ	OutputDisable Time $\overline{\mathrm{OEA}}$ to $\mathrm{Ax}, \overline{\mathrm{OE} 1 \mathrm{~B}}$ or 1 BX , or $\overline{\mathrm{OE} 2 \mathrm{~B}}$ to 2 Bx		1.5	4.4	1.5	4	1.5	4	ns
tSU	Set-Up Time, HIGH or LOW Data to Latch		1.5	-	1	-	1	-	ns
H	Hold Time, Latch to Data		1	-	1	-	1	-	ns
tw	Pulse Width, Latch HIGH ${ }^{(4)}$		3	-	3	-	3	-	ns
tSK(0)	OutputSkew ${ }^{(3)}$		-	0.5	-	0.5	-	0.5	ns

NOTES:

1. See test circuit and waveforms.
2. Minimum limits are guaranteed but not tested on Propagation Delays.
3. Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.
4. This parameter is guaranteed but not tested.

TEST CIRCUITS AND WAVEFORMS

Test Circuits for All Outputs

Set-up, Hold, and Release Times

Propagation Delay

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:
$C L=$ Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to Zout of the Pulse Generator.

Pulse Width

Enable and Disable Times

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
2. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz}$; $\mathrm{tF} \leq 2.5 \mathrm{~ns}$; $\mathrm{tR} \leq 2.5 \mathrm{~ns}$.

ORDERING INFORMATION

CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138
for SALES:
800-345-7015 or 408-284-8200 fax: 408-284-2775
www.idt.com
for Tech Support:
logichelp@idt.com

