POWER FACTOR CORRECTOR

- CONTROL BOOST PWM UP TO 0.99P.F.
- LIMIT LINE CURRENT DISTORTION TO $<5 \%$
- UNIVERSAL INPUT MAINS
- FEED FORWARD LINE AND LOAD REGULATION
- AVERAGE CURRENT MODE PWM FOR MINIMUM NOISE SENSITIVITY
- HIGH CURRENT BIPOLAR AND DMOS TOTEM POLE OUTPUT
- LOW START-UP CURRENT (0.3mA TYP.)
- UNDER VOLTAGE LOCKOUT WITH HYSTERESIS AND PROGRAMMABLE TURN ON THRESHOLD
- OVERVOLTAGE, OVERCURRENT PROTECTION
- PRECISE 2\% ON CHIP REFERENCE EXTERNALLY AVAILABLE
- SOFT START

DESCRIPTION

The L4981 I.C. provides the necessary features to achieve a very high power factor up to 0.99 .
Realized in BCD 60II technology this power factor corrector (PFC) pre-regulator contains all the con-

MULTIPOWER BCD TECHNOLOGY

trol functions for designing a high efficiency-mode power supply with sinusoidal line current consumption.
The L4981 can be easily used in systems with mains voltages between 85 V to 265 V without any line switch. This new PFC offers the possibility to work at fixed frequency (L4981A) or modulated frequency (L4981B) optimizing the size of the in-

BLOCK DIAGRAM

put filter; both the operating frequency modes working with an average current mode PWM controller, maintaining sinusoidal line current without slope compensation.
Besides power MOSFET gate driver, precise voltage reference (externally available), error amplifier, undervoltage lockout, current sense and the
soft start are included. To limit the number of the external components, the device integrates protections as overvoltage and overcurrent. The overcurrent level can be programmed using a simple resistor for L4981A. For a better precision and for L4981B an external divider must be used.

ABSOLUTE MAXIMUM RATINGS

Symbol	Pin	Parameter		Value	Unit
Vcc	19	Supply Voltage (Icc $\leq 50 \mathrm{~mA}$) (*)		selflimit	V
Igdrv	20	Gate driv. output peak current ($t=1 \mu \mathrm{~s}$)	SINK	2	A
			SOURCE	1.5	A
VGDRV		Gate driv. output voltage $\mathrm{t}=0.1 \mu \mathrm{~s}$		-1	V
		Voltages at pins 3, 14, 7, 6, 12, 15		-0.3 to 9	V
Vva-out	13	Error Amplifier Voltage		-0.3 to 8.5	V
IAC	4	AC Input Current		5	mA
		Voltages at pin 8, 9		-0.5 to 7	V
Vca-out	5	Current Amplifier Volt. (Isource $=-20 \mathrm{~mA}$; Isink $=20 \mathrm{~mA}$)		-0.3 to 8.5	V
Vrosc	17	Voltage at pin 17		-0.3 to 3	V
	11, 18	Voltage at pin 11, 18		-0.3 to 7	V
Icosc	18	Input Sink Current		15	mA
IFREQ-MOD	16	Frequency Modulation Sink Current (L4981B)		5	mA
VsYnc	16	Sync. Voltage (L4981A)		-0.3 to 7	V
VIPK	2	Voltage at pin 2 Voltage at Pin $2 \mathrm{t}=1 \mu \mathrm{~s}$		$\begin{gathered} -0.3 \text { to } 5.5 \\ -2 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Ptot		Power Dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C} \quad$ (DIP20)		1	W
		Power Dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C} \quad$ (SO20)		0.6	W
$\mathrm{T}_{\text {op }}$		Operating Ambient Temperature		-40 to 125	${ }^{\circ} \mathrm{C}$
Tstg		StorageTemperature		-55 to 150	${ }^{\circ} \mathrm{C}$

(*) Maximum package power dissipation limits must be observed.
PIN CONNECTIONS (Top views)

THERMAL DATA

Symbol	Parameter	DIP 20	SO 20	Unit
Rth $_{\mathrm{j} \text {-amb }}$	Thermal Resistance Junction-ambient	80	120	${ }^{\circ} \mathrm{C} / \mathrm{W}$

PIN FUNCTIONS

N.	Name	Description
1	P-GND	Power ground.
2	IPK	L4981A peak current limiting. A current limitation is obtained using a single resistor connected between Pin 2 and the sense resistor. To have a better precision another resistor between Pin 2 and a reference voltage (Pin 11) must be added. L4981B peak current limiting. A precise current limitation is obtained using two external resistor only. These resistors must be connected between the sense resistor, Pin 2 and the reference voltage.
3	OVP	Overvoltage protection. At this input are compared an internal precise 5.1V (typ) voltage reference with a sample of the boost output voltage obtained via a resistive voltage divider in order to limit the maximum output peak voltage.
4	IAC	Input for the AC current. An input current proportional to the rectified mains voltage generates, via a multiplier, the current reference for the current amplifier.
5	CA-OUT	Current amplifier output. An external RC network determinates the loop gain.
6	LFF	Load feedforward; this voltage input pin allows to modify the multiplier output current proportionally to the load, in order to give a faster response versus load transient. The best control is obtained working between 1.5 V and 5.3 V . If this function is not used, connect this pin to the voltage reference ($\mathrm{pin}=11$).
7	VRMS	Input for proportional RMS line voltage. the VRMS input compesates the line voltage changes. Connecting a low pass filter between the rectified line and the pin 7, a DC voltage proportional to the input line RMS voltage is obtained. The best control is reached using input voltage between 1.5 V and 5.5 V . If this function is not used connect this pin to the voltage reference ($\mathrm{pin}=11$).
8	MULT-OUT	Multiplier output. This pin common to the multiplier output and the current amplifier N.I. input is an high impedence input like $I_{\text {SENSE }}$. The MULT-OUT pin must be taken not below -0.5 V .
9	IsENSE	Current amplifier inverting input. Care must be taken to avoid this pin goes down -0.5 V .
10	S-GND	Signal ground.
11	Vref	Output reference voltage (typ $=5.1 \mathrm{~V}$). Voltage refence at $\pm 2 \%$ of accuracy externally available, it's internally current limited and can deliver an output current up to 10 mA .
12	SS	A capacitor connected to ground defines the soft start time. An internal current generator delivering $100 \mu \mathrm{~A}(\mathrm{typ})$ charges the external capacitor defining the soft start time constant. An internal MOS discharge, the external soft start capacitor both in overvoltage and UVLO conditions.
13	VA-OUT	Error amplifier output, an RC network fixes the voltage loop gain characteristics.
14	VFEED	Voltage error amplifier inverting input. This feedback input is connected via a voltage divider to the boost output voltage.
15	P-UVLO	Programmable under voltage lock out threshold input. A voltage divider between supply voltage and GND can be connected in order to program the turn on threshold.
16	$\begin{gathered} \text { SYNC } \\ (\mathrm{L} 4981 \mathrm{~A}) \end{gathered}$	This synchronization input/output pin is CMOS logic compatible. Operating as SYNC in, a rectangular wave must be applied at this pin. Opearting as SYNC out, a rectangular clock pulse train is available to synchronize other devices.
	$\begin{array}{\|l\|} \hline \text { FREQ-MOD } \\ \text { (L4981B) } \end{array}$	Frequency modulation current input. An external resistor must be connected between pin 16 and the rectified line voltage in order to modulate the oscillator frequency. Connecting pin 16 to ground a fixed frequency imposed by ROSC and Cosc is obtained.
17	Rosc	An external resistor connected to ground fixes the constant charging current of Cosc.
18	Cosc	An external capacitor connected to GND fixes the switching frequency.
19	$V_{C C}$	Supply input voltage.
20	GDRV	Output gate driver. Bipolar and DMOS transistors totem pole output stage can deliver peak current in excess 1A useful to drive MOSFET or IGBT power stages.

ELECTRICAL CHARACTERISTICS (Unless otherwise specified $\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$, Cosc $=1 \mathrm{nF}$,
ROSC $=24 \mathrm{~K} \Omega$, CSS $=1 \mu \mathrm{~F}, \mathrm{~V}_{\text {CA-OUT }}=3.5 \mathrm{~V}, \mathrm{~V}_{\text {ISENSE }}=0 \mathrm{~V}, \mathrm{~V}_{\text {LFF }}=\mathrm{V}_{\text {REF }}, \mathrm{I}_{\mathrm{AC}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {RMS }}=1 \mathrm{~V}$,
$\mathrm{V}_{\text {FEED }}=\mathrm{GND}, \mathrm{V}_{\text {IPK }}=1 \mathrm{~V}, \mathrm{~V}_{\text {OVP }}=1 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Symbol	Prameter	Test Condition	Min.	Typ.	Max.	Unit
ERROR AMPLIFIER SECTION						
V_{10}	Input Offset Voltage	$-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<85^{\circ} \mathrm{C}$			± 8	mV
I_{B}	Input Bias Current	$\mathrm{V}_{\text {FEED }}=0 \mathrm{~V}$	-500	-50	500	nA
	Open Loop Gain		70	100		dB
$\mathrm{V}_{13 \mathrm{H}}$	Output High voltage	$\begin{aligned} & \mathrm{V}_{\text {FEED }}=4.7 \mathrm{~V} \\ & \text { IVA-OUT }=-0.5 \mathrm{~mA} \end{aligned}$	5.5	6.5	7.5	V
$V_{13 L}$	Output Low Voltage	$\begin{aligned} & \mathrm{V}_{\text {FEED }}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{VA}-\mathrm{OUT}}=0.5 \mathrm{~mA} \\ & \hline \end{aligned}$		0.4	1	V
$-\mathrm{I}_{13}$	Output Source Current	$\mathrm{V}_{\text {FEED }}=4.7 \mathrm{~V} ; \mathrm{V}_{\text {VA-OUT }}=3.5 \mathrm{~V}$	2	10		mA
I_{13}	Output Sink Current	$\mathrm{V}_{\text {FEED }}=5.5 \mathrm{~V} ; \mathrm{V}_{\text {VA-OUT }}=3.5 \mathrm{~V}$	4	20		mA
REFERENCE SECTION						
$\mathrm{V}_{\text {ref }}$	Reference Output Voltage	$-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<85^{\circ} \mathrm{C}$	4.97	5.1	5.23	V
		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \mathrm{I}_{\text {ref }}=0$	5.01	5.1	5.19	V
$\Delta \mathrm{V}_{\text {ref }}$	Load Regulation	$\begin{aligned} & 1 \mathrm{~mA} \leq \mathrm{I}_{\text {ref }} \leq 10 \mathrm{~mA} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{J}<85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		3	15	mV
$\Delta \mathrm{V}_{\text {ref }}$	Line Regulation	$\begin{aligned} & 12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq 19 \mathrm{~V} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		3	10	mV
$\mathrm{I}_{\text {ref sc }}$	Short Circuit Current	$\mathrm{V}_{\text {ref }}=0 \mathrm{~V}$	20	30	50	mA
OSCILLATOR SECTION						
$\mathrm{f}_{\text {osc }}$	Initial Accuracy	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	85	100	115	KHz
	Frequency Stability	$\begin{aligned} & 12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 19 \mathrm{~V} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{J}<85^{\circ} \mathrm{C} \end{aligned}$	80	100	120	KHz
$\mathrm{V}_{\text {svp }}$	Ramp Valley to Peak		4.7	5	5.3	V
$\mathrm{l}_{18 \mathrm{C}}$	Charge Current	$\mathrm{V}_{\text {cosc }}=3.5 \mathrm{~V}$	0.45	0.55	0.65	mA
$\mathrm{I}_{18 \mathrm{D}}$	Discharge Current	$\mathrm{V}_{\mathrm{COSC}}=3.5 \mathrm{~V}$		11.5		mA
V_{18}	Ramp Valley Voltage		0.9	1.15	1.4	V
SYNC SECTION (Only for L4981A)						
tw	Output Pulse Width	50\% Amplitude	0.3	0.8		$\mu \mathrm{s}$
I_{16}	Sink Current with Low Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{SYNC}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COSC}}=0 \mathrm{~V} \\ & \hline \end{aligned}$	0.4	0.8		mA
$-l_{16}$	Source Current with High Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{SYNC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COSC}}=6.7 \mathrm{~V} \end{aligned}$	1	6		mA
$\mathrm{V}_{16 \mathrm{~L}}$	Low Input Voltage				0.9	V
$\mathrm{V}_{16 \mathrm{H}}$	High Input Voltage		3.5			V
t_{d}	Pulse for Synchronization		800			ns
FREQUENCY MODULATION FUNCTION (Only for L4981B)						
$\mathrm{f}_{18 \text { max }}$	Maximum Oscillation Frequency	$\mathrm{V}_{\text {FREQ-MOD }}=0 \mathrm{~V}($ Pin 16) $) \mathrm{l}_{\text {req }}=0$	85	100	115	KHz
$\mathrm{f}_{18 \text { min }}$	Minimum Oscillator Frequency	$\begin{aligned} & l_{\text {FREQ-MOD }}=360 \mu \mathrm{~A}(\text { Pin } 16) \\ & \mathrm{V}_{\text {VRMS }}=4 \mathrm{~V}(\text { Pin } 7) \end{aligned}$		74		KHz
		$\begin{aligned} & I_{\text {FREQ-MOD }}=180 \mu \mathrm{~A}(\text { Pin 16 }) \\ & \text { VVRMS }=2 \mathrm{~V}(\text { Pin } 7) \end{aligned}$		76		KHz
SOFT START SECTION						
$\mathrm{I}_{\text {S }}$	Soft Start Source Current	$\mathrm{V}_{\text {SS }}=3 \mathrm{~V}$	60	100	140	$\mu \mathrm{A}$
$\mathrm{V}_{12 \text { sat }}$	Output Saturation Voltage	$\mathrm{V}_{3}=6 \mathrm{~V}, \mathrm{I}_{\text {SS }}=2 \mathrm{~mA}$		0.1	0.25	V

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
SUPPLY VOLTAGE						
$V_{C C}$	Operating Supply Voltage				19.5	V
OVER VOLTAGE PROTECTION COMPARATOR						
$\mathrm{V}_{\text {thr }}$	Rising Threshold Voltage		$\begin{gathered} \begin{array}{c} V_{\text {ref }} \\ -20 \mathrm{mV} \end{array} \end{gathered}$	5.1	$\begin{gathered} \begin{array}{c} V_{\text {ref }} \\ +20 \mathrm{mV} \end{array} \end{gathered}$	V
$\mathrm{V}_{3 \mathrm{Hys}}$	Hysteresis		180	250	320	mV
I_{3}	Input Bias Current			0.05	1	$\mu \mathrm{A}$
$\mathrm{t}_{\text {d }}$	Propagation delay to output	$\mathrm{V}_{\text {OVP }}=\mathrm{V}_{\text {thr }}+100 \mathrm{mV}$		1	2	$\mu \mathrm{s}$
OVER CURRENT PROTECTION COMPARATOR						
$\mathrm{V}_{\text {th }}$	Threshold Voltage				± 30	mV
$\mathrm{t}_{\text {d }}$	Propagation delay to Output	$\mathrm{V}_{\text {OCP }}=\mathrm{V}_{\text {thr }}-0.2 \mathrm{~V}$		0.4	0.9	$\mu \mathrm{s}$
lipk	Current Source Generator	$\mathrm{V}_{\text {IPK }}=-0.1 \mathrm{~V}$ only for L4981A	65	85	105	$\mu \mathrm{A}$
IL	Leakage Current	$\mathrm{V}_{\text {IPK }}=-0.1 \mathrm{~V}$ only for L4981B			5	$\mu \mathrm{A}$
CURRENT AMPLIFIER SECTION						
$\mathrm{V}_{\text {offset }}$	Input Offset Voltage	$\mathrm{V}_{\text {MULT }}$ OUT $=\mathrm{V}_{\text {SENSE }}=3.5 \mathrm{~V}$			± 2	mV
Igbias	Input Bias Current	$V_{\text {SENSE }}=0 \mathrm{~V}$	-500	50	500	nA
	Open Loop Gain	$1.1 \mathrm{~V} \leq \mathrm{V}_{\text {CA OUT }} \leq 6 \mathrm{~V}$	70	100		dB
SVR	Supply Voltage Rejection	$\begin{aligned} & 12 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 19 \mathrm{~V} \\ & \mathrm{~V}_{\text {MULT OUT }}=3.5 \mathrm{~V} \mathrm{~V}_{\text {SENSE }}=3.5 \mathrm{~V} \end{aligned}$	68	90		dB
$\mathrm{V}_{5} \mathrm{H}$	Output High Voltage	$\begin{aligned} & \mathrm{V}_{\text {MULT OUT }}=200 \mathrm{mV} \\ & \mathrm{I}_{\text {CA OUT }}=-0.5 \mathrm{~mA}, \mathrm{~V}_{\text {IAC }}=0 \mathrm{~V} \end{aligned}$	6.2			V
V_{5}	Output Low Voltage	$\begin{aligned} & \mathrm{V}_{\text {MULT OUT }}=-200 \mathrm{mV} \\ & I_{\text {CA OUT }}=0.5 \mathrm{~mA}, \mathrm{~V}_{\text {IAC }}=0 \mathrm{~V} \end{aligned}$			0.9	V
$-I_{5}$	Output Source Current	$\mathrm{V}_{\text {MULT }}$ OUT $=200 \mathrm{mV}$,	2	10		mA
15	Output Sink Current	$\mathrm{V}_{\text {IAC }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CA-OUT }}=3.5 \mathrm{~V}$	2	10		mA
OUTPUT SECTION						
$\mathrm{V}_{20 \mathrm{~L}}$	Output Voltage Low	$\mathrm{I}_{\text {SINK }}=250 \mathrm{~mA}$		0.5	0.8	V
$\mathrm{V}_{2 \mathrm{OH}}$	Output Voltage High	$\begin{aligned} & I_{\text {SOURCE }}=250 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$	11.5	12.5		V
t_{r}	Output Voltage Rise Time	Cout $=1 \mathrm{nF}$		50	150	ns
t_{f}	Output Voltage Fall Time	$\mathrm{C}_{\text {OUT }}=1 \mathrm{nF}$		30	100	ns
$\mathrm{V}_{\text {GDRV }}$	Voltage Clamp	$I_{\text {SOURCE }}=0 \mathrm{~mA}$	13	16	19	V
TOTAL STANDBY CURRENT SECTION						
$\mathrm{l}_{19 \text { start }}$	Supply Current before start up	$\mathrm{V}_{C C}=14 \mathrm{~V}$		0.3	0.5	mA
I_{190}	Supply Current after turn on	$\begin{aligned} & \mathrm{V}_{\mathrm{IAC}}=0 \mathrm{~V}, \mathrm{~V}_{\operatorname{cosc}}=0, \\ & \text { Pin17 = Open } \end{aligned}$		8	12	mA
I_{19}	Operating Supply Current	Pin20 $=1 \mathrm{nF}$		12	16	mA
V_{CC}	Zener Voltage	(*)	20	25	30	V
UNDER VOLTAGE LOCKOUT SECTION						
$\mathrm{V}_{\text {th }}$ ON	Turn on Threshold		14.5	15.5	16.5	V
$\mathrm{V}_{\text {th }}$ OFF	Turn off Threshold		9	10	11	V
	Programmable Turn-on Threshold	Pin 15 to $\mathrm{V}_{\mathrm{CC}}=220 \mathrm{~K}$ Pin15 Pin15 to GND $=33 \mathrm{~K}$	10.6	12	13.4	V
LOAD FEED FORWARD						
$l_{\text {LFF }}$	Bias Current	$\mathrm{V}_{6}=1.6 \mathrm{~V}$		70	140	$\mu \mathrm{A}$
		$\mathrm{V}_{6}=5.3 \mathrm{~V}$		200	300	$\mu \mathrm{A}$
VI	Input Voltage Range		1.6		5.3	V

${ }^{(*)}$ Maximum package power dissipation limits must be observed.

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Prameter	Test Condition	Min.	Typ.	Max.	Unit
MULTIPLIER SECTION						
	Multipler Output Current	$\mathrm{V}_{\mathrm{VA}-\mathrm{OUT}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{RMS}}=2 \mathrm{~V}$, $\mathrm{V}_{\text {MULTOUT }}=0, \mathrm{~V}_{\text {LFF }}=5.1 \mathrm{~V}$ $\mathrm{I}_{\mathrm{AC}}=50 \mu \mathrm{~A}, \mathrm{Cosc}=0 \mathrm{~V}$	20	35	52	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{VA} \text {-OUT }}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{RMS}}=2 \mathrm{~V}$, $\mathrm{V}_{\text {MULTOUT }}=0, \mathrm{~V}_{\text {LFF }}=5.1 \mathrm{~V}$ $I_{A C}=200 \mu A, C o s C=0 V$	100	135	170	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{VA} \text {-OUT }}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{RMS}}=2 \mathrm{~V}$, $\mathrm{V}_{\text {MULTOUT }}=0, \mathrm{~V}_{\text {LFF }}=5.1 \mathrm{~V}$ $I_{A C}=100 \mu A, C o s C=0 V$	10	20	30	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {VA-OUT }}=2 \mathrm{~V}, \mathrm{~V}_{\text {RMS }}=4 \mathrm{~V}$, $\mathrm{V}_{\text {MULTOUT }}=0, \mathrm{~V}_{\text {LFF }}=5.1 \mathrm{~V}$ $\mathrm{I}_{\mathrm{AC}}=100 \mu \mathrm{~A}, \mathrm{CosC}=0 \mathrm{~V}$	2	5.5	11	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {VA-OUT }}=4 \mathrm{~V}, \mathrm{~V}_{\text {RMS }}=4 \mathrm{~V}$, $\mathrm{V}_{\text {MULTOUT }}=0, \mathrm{~V}_{\text {LFF }}=5.1 \mathrm{~V}$ $\mathrm{I}_{\mathrm{AC}}=100 \mu \mathrm{~A}, \mathrm{CosC}=0 \mathrm{~V}$	10	22	34	$\mu \mathrm{A}$
		$\begin{aligned} & V_{\text {VA-OUT }}=4 \mathrm{~V}, \mathrm{~V}_{\text {RMS }}=2 \mathrm{~V}, \\ & V_{\text {MULTOUT }}=0, V_{\text {LFF }}=2.5 \mathrm{~V} \\ & \text { CosC }=0 \mathrm{~V}, \mathrm{I}_{\text {AC }}=200 \mu \mathrm{~A} \end{aligned}$	20	37	54	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {VA-OUT }}=4 \mathrm{~V}, \mathrm{~V}_{\text {RMS }}=4 \mathrm{~V}$ $\mathrm{V}_{\text {MULTOUT }}=0, \mathrm{~V}_{\text {LFF }}=5.1 \mathrm{~V}$ $\mathrm{I}_{\mathrm{AC}}=200 \mu \mathrm{~A}, \mathrm{CosC}=0 \mathrm{~V}$	20	39	54	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {VA-OUT }}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{RMS}}=4 \mathrm{~V}$, $\mathrm{V}_{\text {MULTOUT }}=0, \mathrm{~V}_{\text {LFF }}=5.1 \mathrm{~V}$ $\mathrm{I}_{\mathrm{AC}}=0, \mathrm{Cosc}=0 \mathrm{~V}$	-2	0	2	$\mu \mathrm{A}$
K	Multiplier Gain			0.37		

$$
I_{\text {MULT-OUT }}=\mathrm{K} \cdot \mathrm{I}_{\text {AC }} \frac{\left(\mathrm{V}_{\text {VA-OUT }}-1.28\right) \cdot\left(0.8 \cdot \mathrm{~V}_{\text {LFF }}-1.28\right)}{\left(\mathrm{V}_{\text {VRMS }}\right)^{2}}
$$

if VLFF $=V_{\text {REF }} ; \quad I_{\text {MULT-OUT }}=I_{\text {AC }} \frac{\left(V_{\text {VA-OUT }}-1.28\right)}{\left(V_{\text {VRMS }}\right)^{2}} \cdot \mathrm{~K} 1$
where: $\mathrm{K} 1=1 \mathrm{~V}$

Figure 1: MULTI-OUT vs. IAC (VMS $=1.7 \mathrm{~V}$;
VLFFD $=5.1 \mathrm{~V}$)

Figure 2: MULTI-OUT vs. IAC (Vrms $=2.2 \mathrm{~V}$;
$\mathrm{V}_{\text {LFFD }}=5.1 \mathrm{~V}$)

Figure 3: MULTI-OUT vs. IAC (VRMS $=4.4 \mathrm{~V}$;

Figure 5: MULTI-OUT vs. IAC (VRMS $=1.7 \mathrm{~V}$;

Figure 7: MULTI-OUT vs. IAC (VRMS $=4.4 \mathrm{~V}$;
$\mathrm{V}_{\text {LFFD }}=2.5 \mathrm{~V}$)

Figure 4: MULTIIOUT vs. IAC (VRMS $=5.3 \mathrm{~V}$;

$$
\mathrm{V}_{\text {LFFD }}=5.1 \mathrm{~V} \text {) }
$$

Figure 6: MULTI-OUT vs. IAC ($\mathrm{V}_{\mathrm{RMS}}=2.2 \mathrm{~V}$; $\mathrm{V}_{\text {LFFD }}=2.5 \mathrm{~V}$)

Figure 8: MULTI-OUT vs. IAC (VRMS $=5.3 \mathrm{~V}$;
VLFFD $=2.5 \mathrm{~V}$)

Figure 9A: L4981A Power Factor Corrector (200W)

$\mathrm{f}_{\mathrm{SW}}=80 \mathrm{kHz} ; \mathrm{PO}_{\mathrm{O}}=200 \mathrm{~W} ; \mathrm{V}_{\text {OUT }}=400 \mathrm{~V} ; \mathrm{I}_{\mathrm{ms}} \max =2.53 \mathrm{~A} ; \mathrm{VOVP}_{\mathrm{O}}=442 \mathrm{~V} ; \mathrm{I}_{\mathrm{PK}} \max =6.2 \mathrm{~A}$

Figure 9B: L4981B Power Factor Corrector (200W)

fsw $=80$ to $92 \mathrm{kHz} ; \mathrm{Po}^{2}=200 \mathrm{~W} ;$ Vout $=400 \mathrm{~V} ; \mathrm{I}_{\mathrm{ms}} \max =2.53 \mathrm{~A} ; \mathrm{VOVP}_{\mathrm{O}}=442 \mathrm{~V} ; \mathrm{I}_{\mathrm{IPK}} \max =6.2 \mathrm{~A}$

Figure 10: Reference Voltage vs. Source Reference Current

Figure 12: Reference Voltage vs. Junction Temperature

Figure 14: Gate Driver Rise and Fall Time

$\boxed{77}$

Figure 11: Reference Voltage vs. Supply Voltage

Figure 13: Switching Frequency vs. Junction Temperature

Figure 15: Operating Supply Current vs. Supply Voltage

Figure 16: Programmable Under Voltage Lockout Thresholds

Figure 17: Modulation Frequency Normalized in an Half Cycle of the Mains Voltage

Table 1: Programmable Under Voltage Lockout Thresholds.

\mathbf{V}_{CC} ON	$\mathbf{V}_{\mathrm{CC} \text { OFF }}$	$\mathbf{R 2 2}$	$\mathbf{R 2 3}$
11 V	10 V	$82 \mathrm{k} \Omega$	$12 \mathrm{k} \Omega$
12 V	10.1 V	$220 \mathrm{k} \Omega$	$33 \mathrm{k} \Omega$
13 V	10.5 V	$430 \mathrm{k} \Omega$	$62 \mathrm{k} \Omega$
14 V	10.8 V	$909 \mathrm{k} \Omega$	$133 \mathrm{k} \Omega$
14.5 V	10.9 V	$1.36 \mathrm{M} \Omega$	$200 \mathrm{k} \Omega$
15 V	11 V	$2.7 \mathrm{M} \Omega$	$390 \mathrm{k} \Omega$

Figure 18: Oscillator Diagram

Figure 19: Demo Board Circuit ($\mathrm{Vo}=400 \mathrm{~V}$; $\mathrm{Po}=360 \mathrm{~W}$).

Figure 20: Component Layout (Dimensions $88 \times 150 \mathrm{~mm}$).

Figure 20: P.C.B. Component Side (Dimensions $88 \times 150 \mathrm{~mm}$).

Figure 20: P.C.B. Solder Side (Dimensions $88 \times 150 \mathrm{~mm}$).

DEMO BOARD EVALUATION RESULTS

Table 2. Nominal Power range at 110Vac.

$\mathbf{V}_{\text {mains }}$	$\mathbf{P}_{\text {out }}$	$\mathbf{V}_{\text {out }}$	$\mathbf{P}_{\text {in }}$	THD	PF	Eff.
88 Vac	366 W	404 Vdc	397 W	5%	0.998	.92
110 Vac	370 W	406 Vdc	395 W	2.2%	0.999	.94
132 Vac	372 W	407 Vdc	394 W	3%	0.999	.945

Table 3. Nominal Power range at 220Vac.

$\mathbf{V}_{\text {mains }}$	$\mathbf{P}_{\text {out }}$	$\mathbf{V}_{\text {out }}$	$\mathbf{P}_{\text {in }}$	THD	PF	Eff.
176 Vac	378 W	410 Vdc	394 W	4.7%	0.997	.959
220 Vac	381 W	412 Vdc	395 W	6.4%	0.993	.964
264 Vac	381 W	412 Vdc	395 W	8.1%	0.987	.964

REFERENCE:

AN628 - DESIGNING A HIGH POWER FACTOR SWITCHING PREREGULATOR WITH THE L4981 CONTINUOUS MODE

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	2.35		2.65	0.093		0.104
A1	0.1		0.3	0.004		0.012
B	0.33		0.51	0.013		0.020
C	0.23		0.32	0.009		0.013
D	12.6		13	0.496		0.512
E	7.4		7.6	0.291		0.299
e		1.27			0.050	
H	10		10.65	0.394		0.419
h	0.25		0.75	0.010		0.030
L	0.4		1.27	0.016		0.050
K			$0 \circ$ (min.) $8^{\circ}(m a x)$.			

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
B	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4			1.000
E		8.5			0.335	
e		2.54			0.100	
e3		22.86			0.900	
F			7.1			0.280
I			3.93			0.155
L		3.3			0.130	
Z			1.34			0.053

L4981A - L4981B

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com

