1. General description

The TDA8932 is a high efficiency class-D amplifier with low power dissipation.

The maximum output power is 2×25 W in stereo half-bridge application ($R_L = 4 \Omega$) or 1×50 W in mono full-bridge application ($R_L = 8 \Omega$). Due to the low power dissipation the device can be used without any external heat sink when playing music. If proper cooling via the printed-circuit board is implemented, a continuous output power of 2×15 W is feasible. Due to the implementation of thermal foldback, even for high supply voltages and/or lower load impedances, the device remains operating with considerable music output power without the need for an external heat sink.

The device has two full-differential inputs driving two independent outputs. It can be used as mono full-bridge configuration (BTL) or as stereo half-bridge configuration (SE).

2. Features

- Operating voltage from 10 V to 36 V asymmetrical or ±5 V to ±18 V symmetrical
- Mono-bridged tied load (full-bridge) or stereo single-ended (half-bridge) application
- Application without heatsink using thermally enhanced small outline package
- High efficiency and low-power dissipation
- Thermally protected and thermal foldback
- Current limiting to avoid audio holes
- Full short-circuit proof across load and to supply lines (using advanced current protection)
- Switchable internal or external oscillator (master-slave setting)
- No pop noise
- Full differential inputs

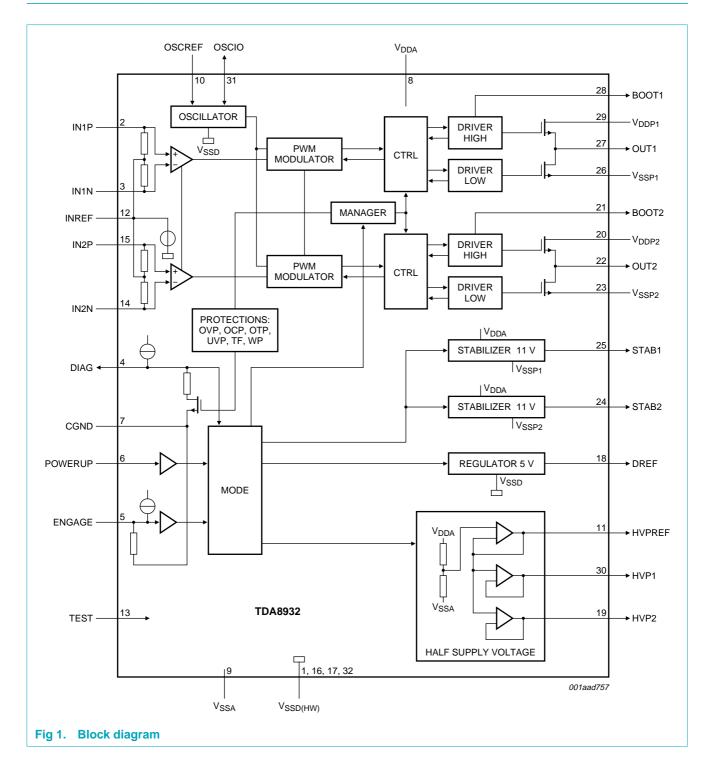
3. Applications

- Flat panel television sets
- Flat panel monitor sets
- Multimedia systems
- Wireless speakers
- Mini and micro systems
- Home sound sets

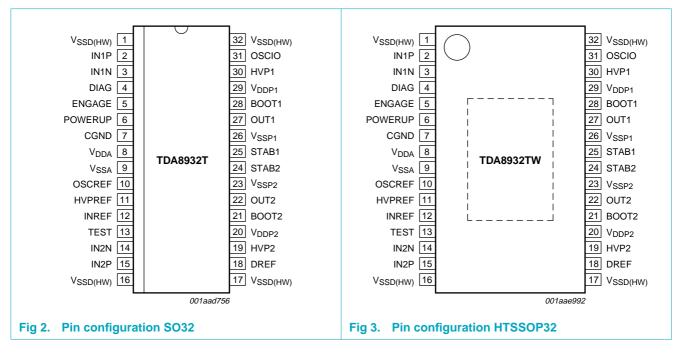
Class-D audio amplifier

4. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
General:	$V_{P} = 22 V$, $f_{osc} = 320$) kHz; T _{amb} = 25 °C				
VP	supply voltage	asymmetrical supply	10	22	36	V
l _P	supply current	Sleep mode; no load	-	0.6	1	mA
I _{q(tot)}	total quiescent current	Operating mode; no load, snubbers and filter connected	-	40	80	mA
Stereo S	E channel ^[1]					
P _{o(RMS)}	RMS output power	continuous time output power per channel; THD+N = 10 %; f _i = 1 kHz				
		$R_L = 4 \Omega; V_P = 22 V$	14	15	-	W
		$R_{L} = 8 \Omega; V_{P} = 30 V$	14	15	-	W
		short time output power per channel; THD+N = 10 %				
		$R_L = 4 \Omega; V_P = 29 V$	23	25	-	W
Mono B1	r <u>L[1]</u>					
P _{o(RMS)}	RMS output power	continuous time output power; THD+N = 10 %; f _i = 1 kHz				
		$R_{L} = 4 \Omega; V_{P} = 12 V$	14	15	-	W
		$R_L = 8 \Omega; V_P = 22 V$	28	30	-	W
		short time output power; THD+N = 10 %				
		$R_{L} = 8 \Omega; V_{P} = 29 V$	47	50	-	W


[1] Output power is measured indirectly; based on R_{DSon} measurement.

5. Ordering information


Table 2.OrdType number	Package				
	Name	Description	Version		
TDA8932T	SO32	plastic small outline package; 32 leads; body width 7.5 mm	SOT287-1		
TDA8932TW	HTSSOP32	plastic thermal enhanced thin shrink small outline package; 32 leads; body width 6.1 mm; lead pitch 0.65 mm; exposed die pad	SOT549-1		

TDA8932 Class-D audio amplifier

6. Block diagram

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
V _{SSD(HW)}	1	negative digital supply voltage and handle wafer connection
IN1P	2	positive audio input for channel 1
IN1N	3	negative audio input for channel 1
DIAG	4	diagnostic output; open-drain
ENGAGE	5	engage input to switch between Mute mode and Operating mode
POWERUP	6	power-up input to switch between Sleep mode and Mute mode
CGND	7	control ground; reference for POWERUP, ENGAGE and DIAG
V _{DDA}	8	positive analog supply voltage
V _{SSA}	9	negative analog supply voltage
OSCREF	10	input internal oscillator setting (only master setting)
HVPREF	11	decoupling of internal half supply voltage reference
INREF	12	decoupling for input reference voltage
TEST	13	test signal input; for testing purpose only
IN2N	14	negative audio input for channel 2
IN2P	15	positive audio input for channel 2
V _{SSD(HW)}	16	negative digital supply voltage and handle wafer connection
V _{SSD(HW)}	17	negative digital supply voltage and handle wafer connection
DREF	18	decoupling of internal (reference) 5 V regulator for logic supply

Class-D audio amplifier

Table 3.	Pin descr	iptioncontinued
Symbol	Pin	Description
HVP2	19	half supply output voltage 2 for charging single-ended capacitor for channel 2
V _{DDP2}	20	positive power supply voltage for channel 2
BOOT2	21	bootstrap high-side driver channel 2
OUT2	22	PWM output channel 2
V _{SSP2}	23	negative power supply voltage for channel 2
STAB2	24	decoupling of internal 11 V regulator for channel 2 drivers
STAB1	25	decoupling of internal 11 V regulator for channel 1 drivers
V _{SSP1}	26	negative power supply voltage for channel 1
OUT1	27	PWM output channel 1
BOOT1	28	bootstrap high-side driver channel 1
V _{DDP1}	29	positive power supply voltage for channel 1
HVP1	30	half supply output voltage 1 for charging single-ended capacitor for channel 1
OSCIO	31	oscillator input in slave configuration or oscillator output in master configuration
V _{SSD(HW)}	32	negative digital supply voltage and handle wafer connection
Exposed d pad	ie -	HTSSOP32 package only ^[1]

[1] The exposed die pad has to be connected to $V_{\mbox{SSD(HW)}}.$

8. Functional description

8.1 General

The TDA8932 is a mono full-bridge or stereo half-bridge audio power amplifier using class-D technology. The audio input signal is converted into a Pulse Width Modulated (PWM) signal via an analog input stage and PWM modulator. To enable the output power Diffusion Metal Oxide Semiconductor (DMOS) transistors to be driven, this digital PWM signal is applied to a control and handshake block and driver circuits for both the high side and low side. A 2nd-order low-pass filter converts the PWM signal to an analog audio signal across the loudspeakers.

The TDA8932 contains two independent half-bridges with full differential input stages. The loudspeakers can be connected in the following configurations:

- Mono full-bridge: Bridge Tied Load (BTL)
- Stereo half-bridge: Single-Ended (SE)

The TDA8932 contains common circuits to both channels such as the oscillator, all reference sources, the mode functionality and a digital timing manager. The following protections are built-in: thermal foldback, temperature, current and voltage protections.

8.2 Mode selection and interfacing

The TDA8932 can be switched in three operating modes using pins POWERUP and ENGAGE:

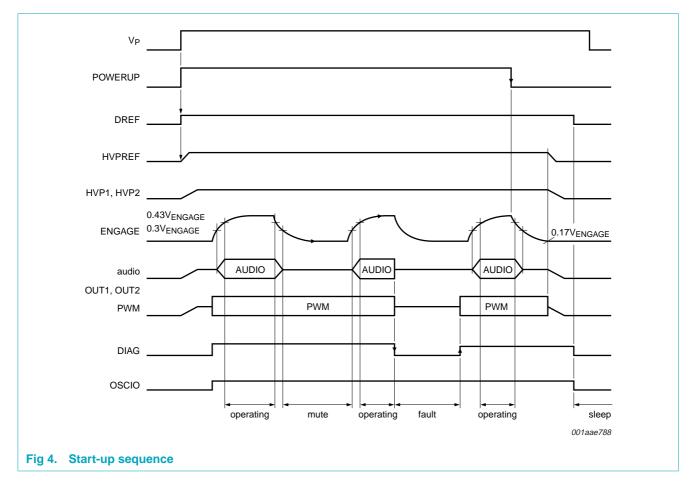
• Sleep mode: with low supply current.

Mode selection

- Mute mode: the amplifiers are switching idle (50 % duty cycle), but the audio signal at the output is suppressed by disabling the VI-converter input stages. The capacitors on pins HVP1 and HVP2 have been charged to half the supply voltage (asymmetrical supply only).
- Operating mode: the amplifiers are fully operational with output signal.
- Fault mode.

Table 4

Both pins POWERUP and ENGAGE refer to pin CGND.


Table 4 shows the different modes as function of the voltages on the POWERUP and ENGAGE pins.

Mode	Pin					
	POWERUP	ENGAGE	DIAG			
Sleep	< 0.8 V	< 0.8 V	don't care			
Mute	2 V to 6.0 V ^[1]	< 0.8 V[1]	> 2 V			
Operating	2 V to 6.0 V ^[1]	3 V to 6.0 V ^[1]	> 2 V			
Fault	2 V to 6.0 V ^[1]	don't care	< 0.8 V			

 In case of symmetrical supply conditions the voltage applied to pins POWERUP and ENGAGE must never exceed the supply voltage (V_{DDA}, V_{DDP1} or V_{DDP2}). If the transition between Mute mode and Operating mode is controlled via a time constant, the start-up will be pop free since the DC output offset voltage is applied gradually to the output between Mute mode and Operating mode. The bias current setting of the VI-converters is related to the voltage on pin ENGAGE:

- Mute mode: the bias current setting of the VI-converters is zero (VI-converters disabled)
- Operating mode: the bias current is at maximum

The time constant required to apply the DC output offset voltage gradually between Mute mode and Operating mode can be generated by applying a decoupling capacitor on pin ENGAGE. The value of the capacitor on pin ENGAGE should be 470 nF.

8.3 Pulse width modulation frequency

The output signal of the amplifier is a PWM signal with a carrier frequency of approximately 320 kHz. Using a 2nd-order low-pass filter in the application results in an analog audio signal across the loudspeaker. The PWM switching frequency can be set by an external resistor R_{osc} connected between pins OSCREF and $V_{SSD(HW)}$. The carrier frequency can be set between 300 kHz and 500 kHz. Using an external resistor of 39 k Ω , the carrier frequency is set to an optimized value of 320 kHz (see Figure 5).

If two or more TDA8932 devices are used in the same audio application, it is recommended to synchronize the switching frequency of all devices. This can be realized by connecting all pins OSCIO together and configure one of the TDA8932 in the application as clock master, while the other TDA8932 devices are configured in slave mode.

Pin OSCIO is a 3-state input or output buffer. Pin OSCIO is configured in master mode as oscillator output and in slave mode as oscillator input. Master mode is enabled by applying a resistor while slave mode is entered by directly connecting pin OSCREF to pin $V_{SSD(HW)}$ (so without any resistor).

The value of the resistor also sets the frequency of the carrier and can be estimated by following formula:

$$f_{osc} = \frac{12.45 \times 10^9}{R_{osc}}$$
(1)

Where:

fosc = oscillator frequency

Rosc = oscillator resistor (on pin OSCREF)

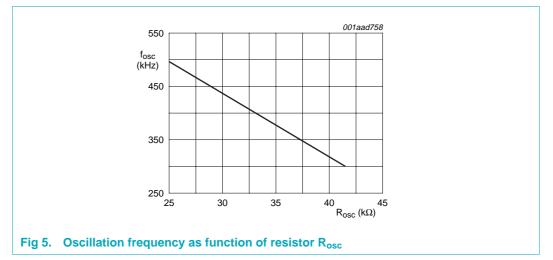


Table 5 summarizes how to configure the TDA8932 in master or slave configuration.

For device synchronization see Section 14.6 "Device synchronization".

Table 5.	Master	or s	lave	configuration
----------	--------	------	------	---------------

Configuration	Pin			
	OSCREF	OSCIO		
Master	R_{osc} > 25 k Ω to $V_{SSD(HW)}$	output		
Slave	$R_{osc} = 0 \Omega$; shorted to $V_{SSD(HW)}$	input		

8.4 Protections

The following protections are included in the TDA8932:

- Thermal Foldback (TF)
- OverTemperature Protection (OTP)
- OverCurrent Protection (OCP)
- Window Protection (WP)
- Supply voltage protections:
 - UnderVoltage Protection (UVP)
 - OverVoltage Protection (OVP)
 - UnBalance Protection (UBP)
- ESD

The reaction of the device on the different fault conditions differs per protection.

8.4.1 Thermal Foldback (TF)

If the junction temperature of the TDA8932 exceeds the threshold level (T_j > 140 °C) the gain of the amplifier is decreased gradually to a level were the combination of dissipation (P) and the thermal resistance from junction to ambient [R_{th(j-a)}] results into a junction temperature around the threshold level.

This means that the device will not completely switch off, but remains operational at lower output power levels. Especially with music output signals this feature enables high peak output powers while still operating without any external heat sink other than the printed-circuit board area.

If the junction temperature still increases due to external causes the OTP shuts down the amplifier completely.

8.4.2 OverTemperature Protection (OTP)

If the junction temperature $T_i > 155$ °C, then the power stage will shutdown immediately.

8.4.3 OverCurrent Protection (OCP)

When the loudspeaker terminals are short-circuited or if one of the demodulated outputs of the amplifier is short-circuited to one of the supply lines, this will be detected by the OCP.

If the output current exceeds the maximum output current ($I_{O(ocp)} > 4$ A), this current will be limited by the amplifier to 4 A while the amplifier outputs remain switching (the amplifier is NOT shutdown completely). This is called current limiting.

The amplifier can distinguish between an impedance drop of the loudspeaker and a low-ohmic short-circuit across the load or to one of the supply lines. This impedance threshold depends on the supply voltage used:

• In case of a short-circuit across the load, the audio amplifier is switched off completely and after approximately 100 ms it will try to restart again. If the short-circuit condition is still present after this time, this cycle will be repeated. The average dissipation will be low because of this low duty cycle.

- In case of a short to one of the supply lines, this will trigger the OCP and the amplifier will be shutdown. During restart the window protection will be activated. As a result the amplifier will not start after 100 ms until the short to the supply lines is removed.
- In case of impedance drop (e.g. due to dynamic behavior of the loudspeaker) the same protection will be activated. The maximum output current is again limited to 4 A, but the amplifier will NOT switch off completely (thus preventing audio holes from occurring). The result will be a clipping output signal without any artifacts.

8.4.4 Window Protection (WP)

The WP checks the PWM output voltage before switching from Sleep mode to Mute mode (outputs switching) and is activated:

- During the start-up sequence, when pin POWERUP is switched from Sleep mode to Mute mode. In the event of a short-circuit at one of the output terminals to V_{DDP1}, V_{SSP1}, V_{DDP2} or V_{SSP2} the start-up procedure is interrupted and the TDA8932 waits for open-circuit outputs. Because the check is done before enabling the power stages, no large currents will flow in the event of a short-circuit.
- When the amplifier is completely shutdown due to activation of the OCP because a short-circuit to one of the supply lines is made, then during restart (after 100 ms) the window protection will be activated. As a result the amplifier will not start until the short-circuit to the supply lines is removed.

8.4.5 Supply voltage protections

If the supply voltage drops below 10 V, the UnderVoltage Protection (UVP) circuit is activated and the system will shut down directly. This switch-off will be silent and without pop noise. When the supply voltage rises above the threshold level, the system is restarted again after 100 ms.

If the supply voltage exceeds 36 V the OverVoltage Protection (OVP) circuit is activated and the power stages will shut down. It is re-enabled as soon as the supply voltage drops below the threshold level. The system is restarted again after 100 ms.

It should be noted that supply voltages > 40 V may damage the TDA8932. Two conditions should be distinguished:

- If the supply voltage is pumped to higher values by the TDA8932 application itself (see also <u>Section 14.3</u>), the OVP is triggered and the TDA8932 is shut down. The supply voltage will decrease and the TDA8932 is protected against any overstress.
- If a supply voltage > 40 V is caused by other or external causes, then the TDA8932 will shut down, but the device can still be damaged since the supply voltage will remain > 40 V in this case. The OVP protection is not a supply voltage clamp.

An additional UnBalance Protection (UBP) circuit compares the positive analog supply voltage (V_{DDA}) and the negative analog supply voltage (V_{SSA}) and is triggered if the voltage difference between them exceeds a certain level. This level depends on the sum of both supply voltages. The unbalance threshold levels can be defined as follows:

- LOW-level threshold: V_{P(th)(ubp)I} < ⁸/₅ × V_{HVPREF}
- HIGH-level threshold: V_{P(th)(ubp)h} > ⁸/₃ × V_{HVPREF}

In a symmetrical supply the UBP is released when the unbalance of the supply voltage is within 6 % of it starting value.

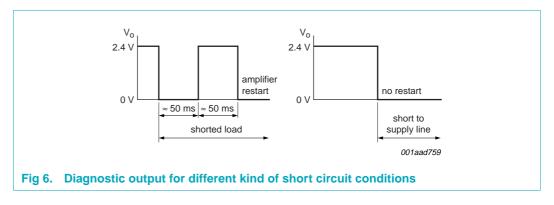
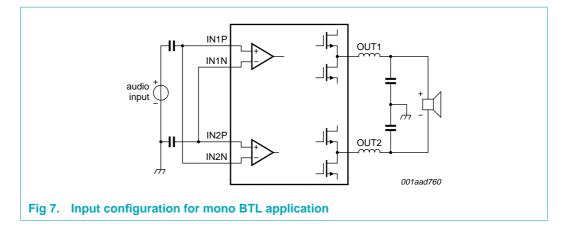

Table 6 shows an overview of all protections and the effect on the output signal.

Table 6.Overview protections	Table 6.	Overview	protections
------------------------------	----------	----------	-------------

Protection	Restart				
	When fault is removed	Every 100 ms			
OTP	no	yes			
OCP	yes	no			
WP	yes	no			
UVP	no	yes			
OVP	no	yes			
UBP	no	yes			

8.5 Diagnostic input and output

Whenever one of the protections is triggered, except for TF, pin DIAG is activated to LOW level (see Table 6). An internal reference supply will pull-up the open-drain DIAG output to approximately 2.4 V. This internal reference supply can deliver approximately 50 μ A. Pin DIAG refers to pin CGND. The diagnostic output signal during different short conditions is illustrated in Figure 6. Using pin DIAG as input, a voltage < 0.8 V will put the device into Fault mode.



8.6 Differential inputs

For a high common-mode rejection ratio and a maximum of flexibility in the application, the audio inputs are fully differential. By connecting the inputs anti-parallel, the phase of one of the two channels can be inverted, so that the amplifier can operate as a mono BTL amplifier. The input configuration for a mono BTL application is illustrated in Figure 7.

In SE configuration it is also recommended to connect the two differential inputs in anti-phase. This has advantages for the current handling of the power supply at low signal frequencies and minimizes supply pumping (see also <u>Section 14.8</u>).

Class-D audio amplifier

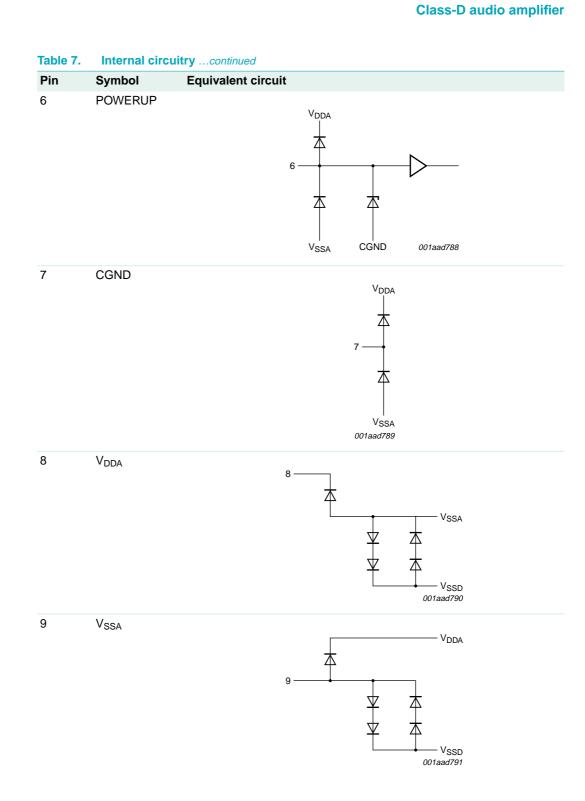
8.7 Output voltage buffers

When pin POWERUP is set HIGH, the half supply output voltage buffers are switched on in asymmetrical supply configuration. The start-up will be pop free since the device starts switching when the capacitor on pin HVPREF and the SE capacitors are completely charged.

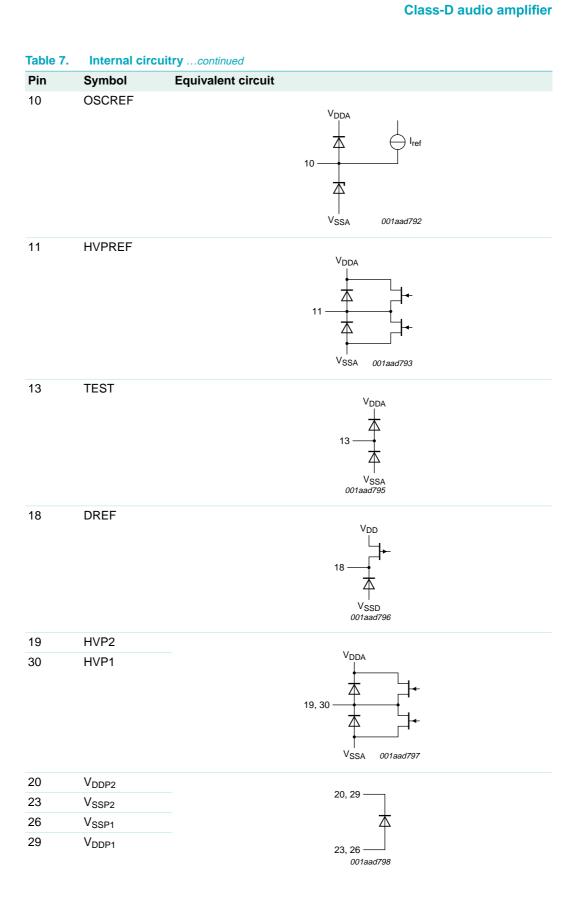
Output voltage buffers:

- Pins HVP1 and HVP2: The time required for charging the SE capacitor is depending on its value. The half supply voltage output is disabled when the TDA8932 is used in a symmetrical supply application.
- Pin HVPREF: This output voltage reference buffer charges the capacitor on pin HVPREF.
- Pin INREF: This output voltage reference buffer charges the input reference capacitor on pin INREF. Pin INREF applies the bias voltage for the inputs.

Class-D audio amplifier


9. Internal circuitry

Pin	Symbol	Equivalent circuit
1	V _{SSD(HW)}	
16	V _{SSD(HW)}	1, 16, VDDA
17	V _{SSD(HW)}	$\overline{\mathbf{A}}$ $\overline{\mathbf{Y}}$ $\overline{\mathbf{A}}$
32	V _{SSD(HW)}	V _{SSA} 001aad784
2	IN1P	
3	IN1N	
12	INREF	$- \qquad \qquad$
14	IN2N	
15	IN2P	12 HVPREF
		3, 14 V_{SSA} V_{SSA} V_{SSA} $V_{O1aad785}$
4	DIAG	VDDA $2.4 V$ 4 $50 \mu A$ 4 $50 \mu A$ $1 \pm 20 \%$ V_{SSA} $CGND$ 001aad786
5	ENGAGE	$5 \xrightarrow{V_{\text{DDA}}} 4.6 \text{ V}$ $5 \xrightarrow{I_{\text{ref}}} 20 \mu\text{A}$ $226 \kappa\Omega$ $\pm 20 \%$


V_{SSA} CGND

001aad787

TDA8932

TDA8932

TDA8932_1 Preliminary data sheet

TDA8932

Class-D audio amplifier

Table 7.	Internal circu	itrycontinued
Pin	Symbol	Equivalent circuit
21	BOOT2	
28	BOOT1	21, 28 OUT1, OUT2 001aad799
22	OUT2	
27	OUT1	22, 27 VDDP1, VDDP2 22, 27 VSSP1, VSSP2 001aad800
24	STAB2	
25	STAB1	24, 25 VSSP1, VSSP2 001aad801
31	OSCIO	31

TDA8932_1 Preliminary data sheet

Class-D audio amplifier

10. Limiting values

Symbol	Parameter	Conditions		Min	Max	Unit
VP	supply voltage	asymmetrical supply	[1]	-0.3	+40	V
V _x	voltage on pin x					
	IN1P, IN1N, INP2, IN2N		[2]	-5	+5	V
	OSCREF, OSCIO, TEST		[3]	$V_{\text{SSD(HW)}}-0.3$	5	V
	POWERUP, ENGAGE, DIAG		<u>[4]</u>	$V_{CGND} - 0.3$	6	V
	all other pins		[5]	$V_{SS}-0.3$	$V_{DD} + 0.3$	V
I _{ORM}	repetitive peak output current	maximum output current limiting	<u>[6]</u>	4	-	A
Tj	junction temperature			-	150	°C
T _{stg}	storage temperature			-55	+150	°C
T _{amb}	ambient temperature			-40	+85	°C
Р	power dissipation			-	5	W

 $[1] \quad V_{P} = V_{DDP1} - V_{SSP1} = V_{DDP2} - V_{SSP2}.$

[2] Measured with respect to pin INREF; $V_x < V_{DD} + 0.3$ V.

[3] Measured with respect to pin V_{SSD(HW)}; V_x < V_{DD} + 0.3 V.

[4] Measured with respect to pin CGND; $V_x < V_{DD} + 0.3 V$.

[5] $V_{SS} = V_{SSP1} = V_{SSP2}$; $V_{DD} = V_{DDP1} = V_{DDP2}$.

[6] Current limiting concept.

11. Thermal characteristics

Table 9. Thermal characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
SO32 pa	ckage						
R _{th(j-a)}	thermal resistance from	free air natural convection					
	junction to ambient	JEDEC test board	[1]	-	41	44	K/W
		2 layer application board		-	44	-	K/W
R _{th(j-lead)}	thermal resistance from junction to lead			-	-	30	K/W
R _{th(j-top)}	thermal resistance from junction to top of package		[2]	-	-	8	K/W
HTSSOP	32 package						
R _{th(j-a)}	thermal resistance from	free air natural convection					
	junction to ambient	JEDEC test board	[1]	-	47	50	K/W
		2 layer application board		-	48	-	K/W
R _{th(j-c)}	thermal resistance from junction to case	free air natural convection		-	4.7	-	K/W

[2] Strongly depends on where you measure on the package.

Class-D audio amplifier

12. Static characteristics

Table 10. Static characteristics

 V_P = 22 V; f_{osc} = 320 kHz; T_{amb} = 25 °C; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply						
VP	supply voltage	asymmetrical supply	10	22	36	V
		symmetrical supply	±5	±11	±18	V
I _P	supply current	Sleep mode; no load	-	0.6	1	mA
I _{q(tot)}	total quiescent current	Operating mode; no load, snubbers and filter connected	-	40	80	mA
Series res	istance output power switch	nes				
R _{DSon}	drain-source on-state	T _j = 25 °C	-	150	-	mΩ
	resistance	T _j = 125 °C	-	234	-	mΩ
Power-up	input: pin POWERUP[1]					
VI	input voltage		0	-	6.0	V
l _l	input current	V ₁ = 3 V	-	1	20	μΑ
V _{IL}	LOW-level input voltage		0	-	0.8	V
V _{IH}	HIGH-level input voltage		2	-	6.0	V
Engage in	put: pin ENGAGE[1]					
Vo	output voltage		4.2	4.6	5.0	V
VI	input voltage		0	-	6.0	V
lo	output current	$V_I = 3 V$	-	20	40	μΑ
VIL	LOW-level input voltage		0	-	0.8	V
VIH	HIGH-level input voltage		3	-	6.0	V
Diagnosti	c output: pin DIAG <u>[1]</u>					
Vo	output voltage	protection activated; see Table 5	-	-	0.8	V
		Operating mode	2	2.5	3.3	V
Bias volta	ge for inputs: pin INREF					
V _{O(bias)}	bias output voltage	with respect to pin V_{SSA}	-	2.1	-	V
Half suppl	ly voltage					
Pins HVP1	and HVP2					
Vo	output voltage	half supply voltage to charge SE capacitor	0.5V _P – 0.2	0.5V _P	0.5V _P + 0.2	V
I _O	output current	$V_{HVP1} = V_O - 1 V;$ $V_{HVP2} = V_O - 1 V$	-	50	-	mA
Pin HVPR	EF					
Vo	output voltage	half supply reference voltage in Mute mode	0.5V _P – 0.2	0.5V _P	0.5V _P + 0.2	V
Reference	voltage for internal logic: p	in DREF				
Vo	output voltage		4.5	4.8	5.1	V

TDA8932

Class-D audio amplifier

Table 10. Static characteristics ... continued

V_P = 22 V; f_{osc} = 320 kHz; T_{amb} = 25 °C; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Amplifier o	outputs: pins OUT1 and OUT2					
V _{O(offset)}	output offset voltage	SE; with respect to pin HVPREF				
		Mute mode	-	-	15	mV
		Operating mode	-	-	100	mV
		BTL				
		Mute mode	-	-	20	mV
		Operating mode	-	-	150	mV
Stabilizer o	output: pins STAB1 and STAB	2				
Vo	output voltage	Mute mode and Operating mode; with respect to pins $V_{\mbox{\scriptsize SSP1}}$ and $V_{\mbox{\scriptsize SSP2}}$	10	11	12	V
Voltage pro	otections					
V _{P(uvp)}	undervoltage protection supply voltage		8.0	9.5	10	V
V _{P(ovp)}	overvoltage protection supply voltage		36	38.5	40	V
V _{P(th)(ubp)} l	low unbalance protection threshold supply voltage	V _{HVPREF} = 11 V	-	-	18	V
V _{P(th)(ubp)h}	high unbalance protection threshold supply voltage	V _{HVPREF} = 11 V	29	-	-	V
Current pro	otections					
I _{O(ocp)}	overcurrent protection output current	current limiting	4	5	-	А
Temperatu	re protections					
T _{act(th_prot)}	thermal protection activation temperature		155	-	160	°C
$T_{act(th_{fold})}$	thermal foldback activation temperature		140	-	150	°C
Oscillator r	reference; pin OSCIO ^[2]					
V _{IH}	HIGH-level input voltage		4.0	-	5	V
V _{IL}	LOW-level input voltage		0	-	0.8	V
V _{OH}	HIGH-level output voltage		4.0	-	5	V
V _{OL}	LOW-level output voltage		0	-	0.8	V
N _{slave(max)}	maximum number of slaves	driven by one master	12	-	-	-

[1] Measured with respect to pin CGND.

[2] Measured with respect to pin $V_{SSD(HW)}$.

13. Dynamic characteristics

Table 11. Switching characteristics

 $V_P = 22 V$; $T_{amb} = 25 \circ C$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Internal o	oscillator					
f _{osc} oscillator freque	oscillator frequency	R_{osc} = 39 k Ω	-	320	-	kHz
		range	300	-	500	kHz
Timing P	WM output: pins OUT1 and	OUT2				
t _r	rise time	I _O = 0 A	-	10	-	ns
t _f	fall time	I _O = 0 A	-	10	-	ns
t _{w(min)}	minimum pulse width	I _O = 0 A	-	80	-	ns

Table 12. SE characteristics

 $V_P = 22 V$; $R_L = 2 \times 4 \Omega$; $f_i = 1 \text{ kHz}$; $f_{osc} = 320 \text{ kHz}$; $R_s < 0.1 \Omega^{[1]}$; $T_{amb} = 25 \degree C$; unless otherwise specified.

-				-		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
P _{o(RMS)}	RMS output power	continuous time output power per channel	[2]			
		$R_L = 4 \Omega; V_P = 22 V$				
		THD+N = 0.5 %, $f_i = 1 \text{ kHz}$	11	12	-	W
		THD+N = 0.5 %, $f_i = 100 \text{ Hz}$	-	12	-	W
		THD+N = 10 %, f _i = 1 kHz	14	15	-	W
		THD+N = 10 %, f _i = 100 Hz	-	15	-	W
		$R_L = 8 \Omega; V_P = 30 V$				
		THD+N = 0.5 %, $f_i = 1 \text{ kHz}$	11	12	-	W
	THD+N = 0.5 %, $f_i = 100 \text{ Hz}$	-	12	-	W	
		THD+N = 10 %, f _i = 1 kHz	14	15	-	W
		THD+N = 10 %, f _i = 100 Hz	-	15	-	W
		short time output power per channel	[2]			
		$R_L = 4 \Omega; V_P = 29 V$				
		THD+N = 0.5 %	19	20	-	W
		THD+N = 10 %	23	25	-	W
THD+N	total harmonic distortion-plus-	$P_o = 1 W$	<u>[3]</u>			
	noise	f _i = 1 kHz	-	0.015	0.05	%
		f _i = 6 kHz	-	0.08	0.10	%
G _{v(cl)}	closed loop voltage gain	$V_i = 100 \text{ mV}; \text{ no load}$	29	30	31	dB
∆G _v	voltage gain difference		-	0.5	1	dB
α_{cs}	channel separation	$P_o = 1 W; f_i = 1 kHz$	70	80	-	dB
SVRR	supply voltage ripple rejection	Operating mode	<u>[4]</u>			
		f _i = 100 Hz	-	60	-	dB
		f _i = 1 kHz	40	50	-	dB
Z _i	input impedance	differential	70	100	-	kΩ
V _{n(o)}	noise output voltage	Operating mode; $R_s = 0 \Omega$	[5] _	100	150	μV
		Mute mode	<u>[5]</u>	70	100	μV
FD 4 0000 4						

$V_P = 22 \text{ V}; R_L = 2 \times 4 \Omega; t_i = 1 \text{ kHz}; t_{osc} = 320 \text{ kHz}; R_s < 0.1 \Omega \overline{\Omega}; T_{amb} = 25 \degree \text{C}; unless otherwise specified.}$						
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{O(mute)}	mute output voltage	Mute mode; $V_i = 1 V$ (RMS) and $f_i = 1 kHz$	-	100	-	μV
CMRR	common mode rejection ratio	$V_{i(cm)} = 1 V (RMS)$	56	75	-	dB
η _{po} output power efficiency		P _o = 15 W				
		$V_P = 22 \text{ V}; \text{ R}_L = 4 \Omega$	90	92	-	%
		$V_P = 30 \text{ V}; \text{ R}_L = 8 \Omega$	91	93	-	%

Table 12. SE characteristics ... continued $V_{P} = 22 V$; $R_{L} = 2 \times 4 \Omega$; $f_{i} = 1 \text{ kHz}$; $f_{esc} = 320 \text{ kHz}$; $R_{s} < 0.1 \Omega^{[1]}$; T_{a}

[1] R_s is the series resistance of inductor of low-pass LC filter in the application.

[2] Output power is measured indirectly; based on R_{DSon} measurement.

[3] THD+N is measured in a bandwidth of 20 Hz to 20 kHz, AES17 brick wall.

[4] Maximum $V_{ripple} = 2 V (p-p); R_s = 0 \Omega.$

[5] B = 20 Hz to 20 kHz, AES17 brick wall.

Table 13. BTL characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
P _{o(RMS)}	RMS output power	continuous time output power	[2]				
		$R_L = 4 \Omega; V_P = 12 V$					
		THD+N = 0.5 %; f _i = 1 kHz		11	12	-	W
		THD+N = 0.5 %; f _i = 100 Hz		-	12	-	W
		THD+N = 10 %; f _i = 1 kHz		14	15	-	W
		THD+N = 10 %; f _i = 100 Hz		-	15	-	W
		$R_L = 8 \Omega; V_P = 22 V$					
		THD+N = 0.5 %; f _i = 1 kHz		23	24	-	W
		THD+N = 0.5 %; f _i = 100 Hz		-	24	-	W
		THD+N = 10 %; f _i = 1 kHz		28	30	-	W
		THD+N = 10 %; f _i = 100 Hz		-	30	-	W
		short time output power	[2]				
		$R_L = 4 \Omega; V_P = 15 V$					
		THD+N = 0.5 %		19	20	-	W
		THD+N = 10 %		23	25	-	W
		$R_L = 8 \Omega; V_P = 29 V$					
		THD+N = 0.5 %		38	40	-	W
		THD+N = 10 %		47	50	-	W
THD+N	total harmonic distortion-plus-	$P_o = 1 W$	[3]				
	noise	f _i = 1 kHz		-	0.04	0.1	%
		f _i = 6 kHz		-	0.04	0.1	%
G _{v(cl)}	closed loop voltage gain			35	36	37	dB
SVRR	supply voltage ripple rejection	Operating mode	[4]				
		f _i = 100 Hz		-	75	-	dB
		f _i = 1000 Hz		70	75	-	dB
		sleep; f _i = 100 Hz	[4]	-	80	-	dB
DA8932_1				© Koninklijł	ke Philips Electro	onics N.V. 2006.	All rights reserv

Class-D audio amplifier

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Z _i	input impedance	differential	35	50		kΩ
V _{n(o)} noise output voltage		$R_s = 0 \Omega$				
		Operating mode	[5] _	100	150	μV
		Mute mode	[5] _	70	100	μV
V _{O(mute)}	mute output voltage	Mute mode; $V_i = 1 V (RMS)$ and $f_i = 1 kHz$	-	100	-	μV
CMRR	common mode rejection ratio	$V_{i(cm)} = 1 V (RMS)$	56	75	-	dB
η_{po}	output power efficiency	P_{o} = 15 W; V_{P} = 12 V and R_{L} = 4 Ω	88	90	-	%
		$P_o = 30$ W; $V_P = 22$ V and $R_L = 8 \Omega$	90	92	-	%

Table 13. BTL characteristics ...continued

[1] R_s is the series resistance of inductor and capacitor of low-pass LC filter in the application.

[2] Output power is measured indirectly; based on R_{DSon} measurement.

[3] THD+N is measured in a bandwidth of 20 Hz to 20 kHz, AES17 brick wall.

[4] Maximum $V_{ripple} = 2 V (p-p); R_s = 0 \Omega.$

[5] B = 20 Hz to 20 kHz, AES17 brick wall.

14. Application information

14.1 Output power estimation

The output power P_o at THD+N = 0.5 %, just before clipping, for the SE and BTL configuration can be estimated using Equation 2 and Equation 3.

SE configuration:

$$P_{o(0.5\%)} = \frac{\left[\left(\frac{R_L}{R_L + R_{DSon} + R_s + R_{ESR}}\right) \times (I - t_{w(min)} \times f_{osc}) \times V_P\right]^2}{8 \times R_L}$$
(2)

BTL configuration:

$$P_{o(0.5\%)} = \frac{\left[\left(\frac{R_L}{R_L + 2 \times (R_{DSon} + R_s)}\right) \times (1 - t_{w(min)} \times f_{osc}) \times V_P\right]^2}{2 \times R_L}$$
(3)

Where:

 V_P = supply voltage $V_{DDP1} - V_{SSP1}$ [V] or $V_{DDP2} - V_{SSP2}$ [V]

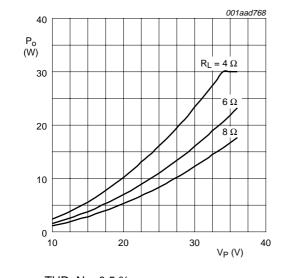
 R_L = load impedance [Ω]

 R_{DSon} = on-resistance power switch [Ω]

 R_s = series resistance output inductor [Ω]

 R_{ESR} = equivalent series resistance SE capacitor [Ω]

tw(min) = minimum pulse width [s]; 80 ns typical


 f_{osc} = oscillator frequency [Hz]; 320 kHz typical with R_{osc} = 39 k Ω

The output power P_o at THD+N = 10 % can be estimated by:

$$P_{o(10\%)} = 1.25 \times P_{o(0.5\%)} \tag{4}$$

<u>Figure 8</u> and <u>Figure 9</u> show the estimated output power at THD+N = 0.5 % and THD+N = 10 % as a function of the supply voltage for SE and BTL configurations at different load impedances. The output power is calculated with: $R_{DSon} = 0.15 \Omega$ (at $T_j = 25 \text{ °C}$), $R_s = 0.05 \Omega$, $R_{ESR} = 0.05 \Omega$ and $I_{O(ocp)} = 4 \text{ A}$ (minimum).

TDA8932 Class-D audio amplifier

a. THD+N = 0.5 %

80

60

40

20

0

, 10

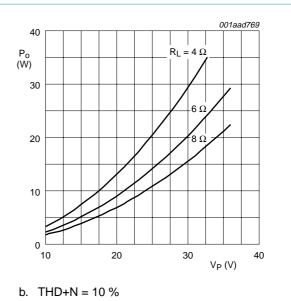
a. THD+N = 0.5 %

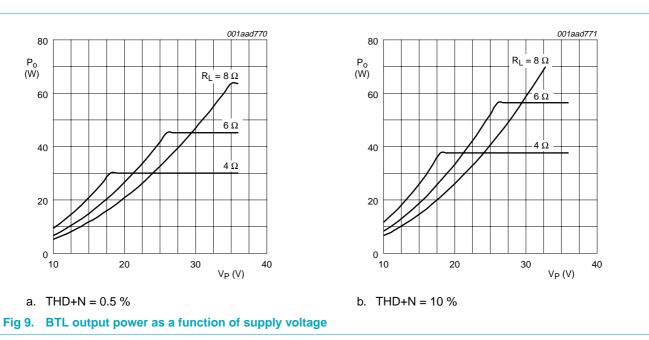
20

P_o (W)

001aad770

 $R_L = 8 \Omega$


6Ω


4 Ω

 $V_{\mathsf{P}}(\mathsf{V})$

40

30

14.2 Output current limiting

The peak output current $I_{O(max)}$ is internally limited above a level of 4 A (minimum). During normal operation the output current should not exceed this threshold level of 4 A otherwise the output signal is distorted. The peak output current in SE or BTL configurations can be estimated using Equation 5 and Equation 6.

SE configuration:

$$I_{O(max)} \le \frac{0.5 \times V_P}{R_L + R_{DSon} + R_s + R_{ESR}} \le 4 A$$
⁽⁵⁾

BTL configuration:

$$I_{O(max)} \le \frac{V_P}{R_L + 2 \times (R_{DSon} + R_s)} \le 4 A$$
(6)

Where:

 V_P = supply voltage $V_{DDP1} - V_{SSP1}$ [V] or $V_{DDP2} - V_{SSP2}$ [V]

 R_L = load impedance [Ω]

 R_{DSon} = on-resistance power switch [Ω]

 R_s = series resistance output inductor [Ω]

 R_{ESR} = equivalent series resistance SE capacitor [Ω]

Example:

A 4 Ω speaker in the BTL configuration can be used until a supply voltage of 18 V without running into current limiting. Current limiting (clipping) will avoid audio holes but it causes a comparable distortion like voltage clipping.

14.3 Speaker configuration and impedance

For a flat frequency response (second-order Butterworth filter) it is necessary to change the low-pass filter components L_{LC} and C_{LC} according to the speaker configuration and impedance. Table 14 shows the practical required values.

Configuration	R L (Ω)	L _{LC} (μΗ)	C _{LC} (nF)		
SE	4	22	680		
	6	33	470		
	8	47	330		
BTL	4	10	1500		
	6	15	1000		
	8	22	680		

Table 14. Filter component values

14.4 Single-ended capacitor

The SE capacitor is forming a high-pass filter with the speaker impedance. So the frequency response will roll-off with 20 dB per decade below f_{-3dB} (3 dB cut-off frequency).

(7)

The 3 dB cut-off frequency is equal to:

$$f_{-3dB} = \frac{1}{2\pi \times R_L \times C_{SE}}$$

Where:

 $f_{-3dB} = 3 dB cut-off frequency [\Omega]$

 R_L = load impedance [Ω]

Table 15. SE capacitor values

C_{SE} = single-ended capacitance [F]; see Figure 29

Table 15 is showing an overview of the required SE capacitor values in case of 60 Hz, 40 Hz or 20 Hz 3 dB cut-off frequency.

Impedance (Ω)	C _{SE} (μF)						
	f _{-3dB} = 60 Hz	f _{-3dB} = 40 Hz	f _{-3dB} = 20 Hz				
4	680	1000	2200				
6	470	680	1500				
8	330	470	1000				

14.5 Gain reduction

The gain of the TDA8932 is internally fixed at 30 dB for SE (or 36 dB for BTL). The gain can be reduced by a resistive voltage divider at the input (see Figure 10).

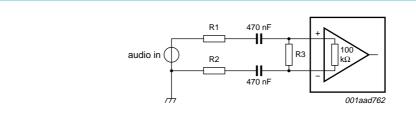


Fig 10. Input configuration for reducing gain

When applying a resistive divider, the total closed loop gain $G_{v(tot)}$ can be calculated by Equation 8 and Equation 9:

$$G_{v(tot)} = G_{v(cl)} + 20\log \times \left[\frac{R_{EQ}}{R_{EQ} + (RI + R2)}\right]$$
(8)

Where:

 $G_{v(tot)}$ = total closed loop voltage gain [dB] $G_{v(cl)}$ = closed loop voltage gain, fixed at 30 dB for SE [dB] R_{EQ} = equivalent resistance, R3 and Z_i [Ω] R1 = series resistors [Ω] R2 = series resistors [Ω]

TDA8932

Class-D audio amplifier

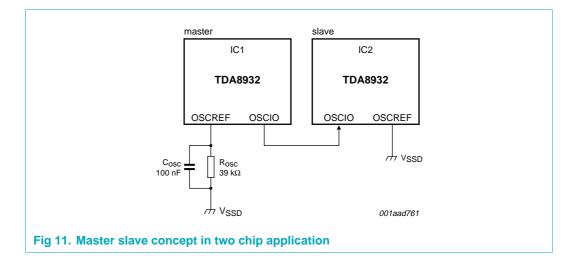
$$R_{EQ} = \frac{R3 \times Z_i}{R3 + Z_i}$$

Where:

 R_{EQ} = equivalent resistance [Ω]

R3 = parallel resistor [Ω]

Z_i = internal input impedance


Example:

Substituting R1 = R2 = 4.7 k Ω , Z_i = 100 k Ω and R3 = 22 k Ω in Equation 8 and Equation 9 results in a gain of G_{v(tot)} = 26.3 dB.

14.6 Device synchronization

If two or more TDA8932 devices are used in one application it is recommended that all devices are synchronized running at the same switching frequency to avoid beat tones. Synchronization can be realized by connecting all OSCIO pins together and configure one of the TDA8932 devices as master, while the other TDA8932 devices are configured as slave (see Figure 11).

A device is configured as master when connecting a resistor between pins OSCREF and $V_{SSD(HW)}$ setting the carrier frequency. Pin OSCIO of the master is then configured as an oscillator output for synchronization. The OSCREF pins of the slave devices should be shorted to $V_{SSD(HW)}$ configuring pin OSCIO as an input.

14.7 Thermal behavior (printed-circuit board considerations)

The heatsink in the application with the TDA8932 is made with the copper on the Printed-Circuit Board (PCB). The TDA8932 uses the four corner leads (pins 1, 16, 17 and 32) for heat transfer from the die to the PCB. The thermal foldback will limit the maximum junction temperature to 140 $^{\circ}$ C.

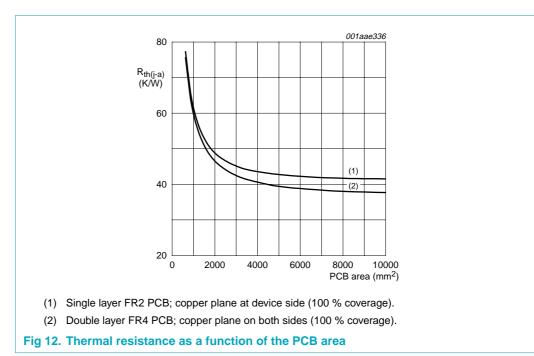
27 of 45

Equation 10 shows the relation between the maximum allowable power dissipation P and the thermal resistance from junction to ambient.

$$R_{th(j-a)} = \frac{T_{j(max)} - T_{amb}}{P}$$
(10)

Where:

R_{th(i-a)} = thermal resistance from junction to ambient


T_{i(max)} = maximum junction temperature

T_{amb} = ambient temperature

P = power dissipation which is determined by the efficiency of the TDA8932

The power dissipation is shown in Figure 21 (SE) and Figure 28 (BTL).

The thermal resistance as a function of the PCB area (35 μm copper) is shown in Figure 12.

Example 1

- At V_P = 30 V and P_o = 2 × 15 W into 8 Ω (THD+N = 10 % continuous), the power dissipation P = 2.3 W at P_o = 15 W (see Figure 21).
- $T_{j(max)} = 125 \text{ °C}$ and $T_{amb} = 25 \text{ °C}$.

The required thermal resistance $R_{th(j-a)} = 100 / 2.3 = 43 \text{ K/W}.$

TDA8932_1 Preliminary data sheet

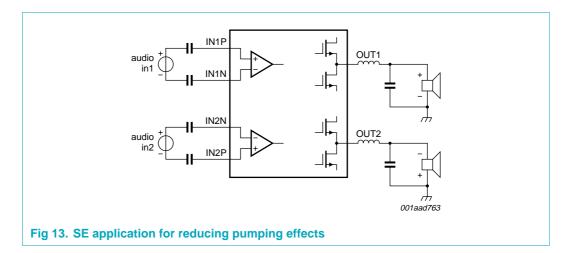
Example 2

In case of music output power at 25 % of the rated power, the $T_{i(max)}$ is much lower.

- At V_P = 30 V and P_o = $2 \times (0.25 \times 15) = 2 \times 3.75$ W into 8 Ω , the power dissipation P = 1.6 W at P_o = 3.75 W (see Figure 21)
- $R_{th(i-a)} = 43 \text{ K/W}$

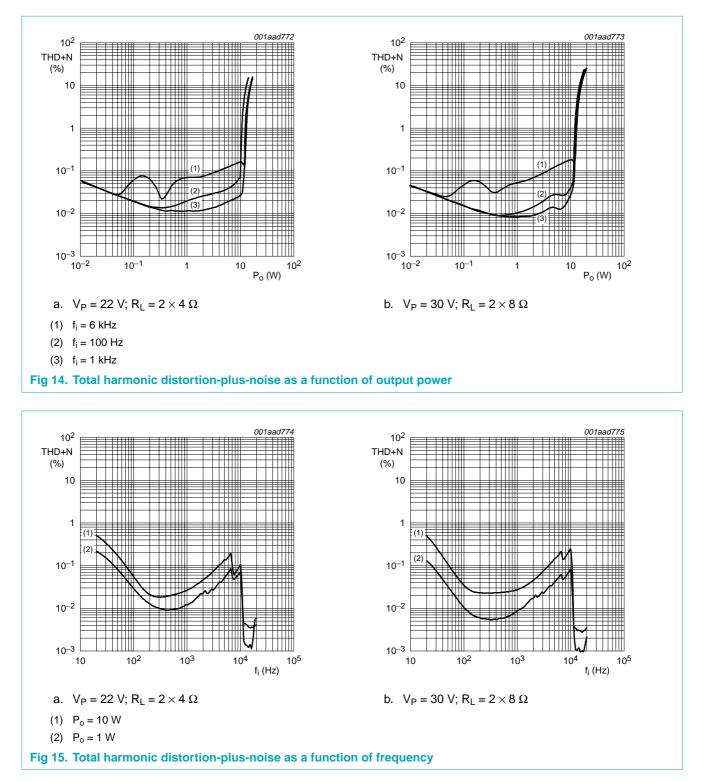
The maximum junction temperature $T_{j(max)} = 25 + 1.6 \times 43 = 93.8$ °C.

14.8 Pumping effects

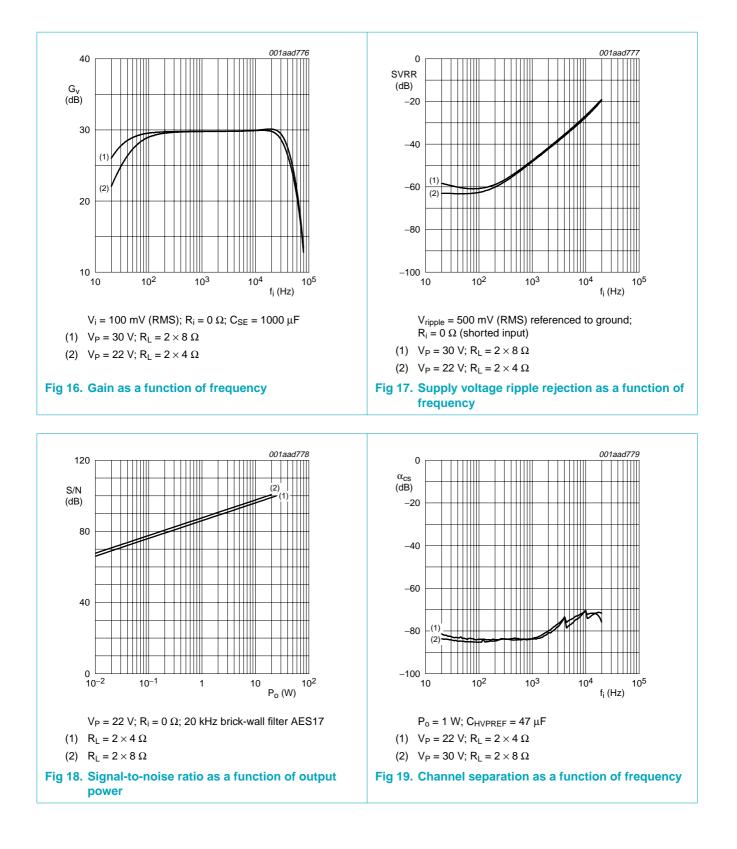

When the amplifier is used in a SE configuration, a so-called 'pumping effect' can occur. During one switching interval, energy is taken from one supply (e.g. V_{DDP1}), while a part of that energy is delivered back to the other supply line (e.g. V_{SSP1}) and visa versa. When the power supply cannot sink energy, the voltage across the output capacitors of that power supply will increase.

The voltage increase caused by the pumping effect depends on:

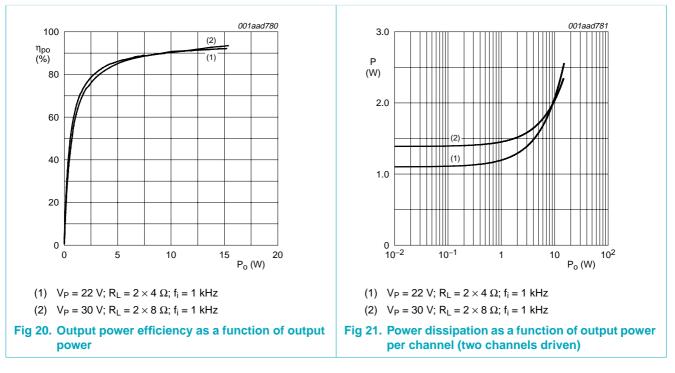
- Speaker impedance
- Supply voltage
- Audio signal frequency
- Value of decoupling capacitors on supply lines
- Source and sink currents of other channels


The pumping effect should not cause a malfunction of either the audio amplifier and/or the power supply. For instance, this malfunction can be caused by triggering of the undervoltage or overvoltage protection of the amplifier.

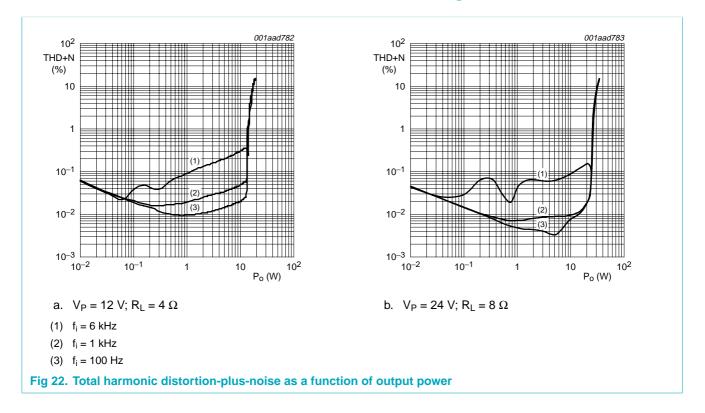
Pumping effects in a SE configuration can be minimized by connecting audio inputs in anti-phase and change the polarity of one speaker. This is illustrated in Figure 13.

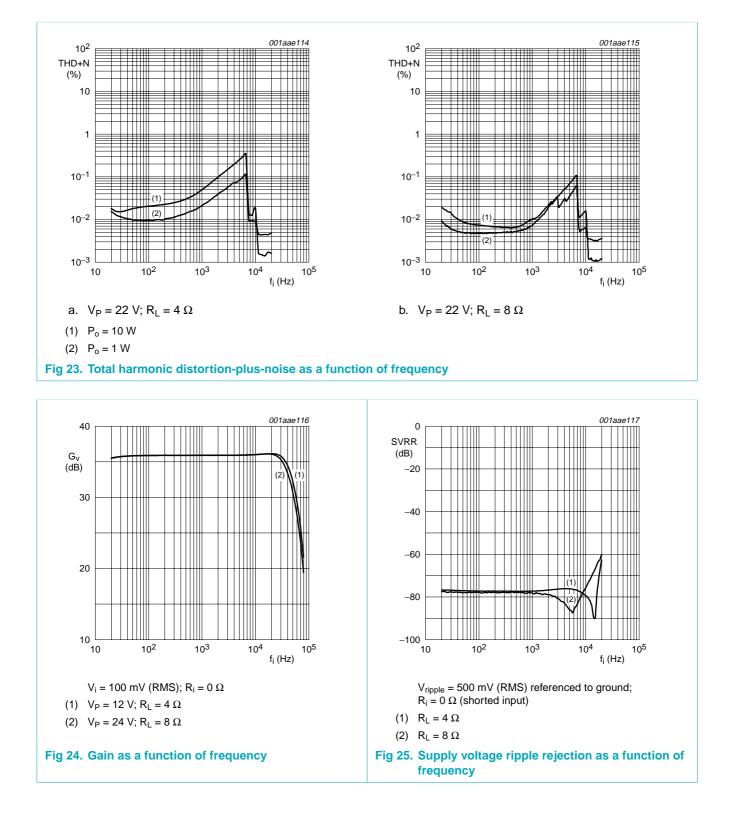

29 of 45

TDA8932 Class-D audio amplifier

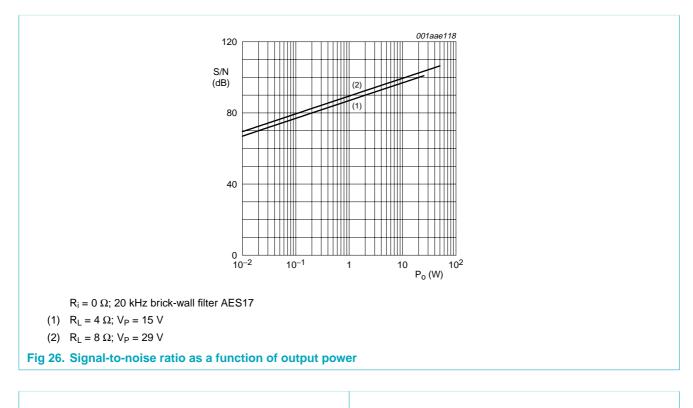


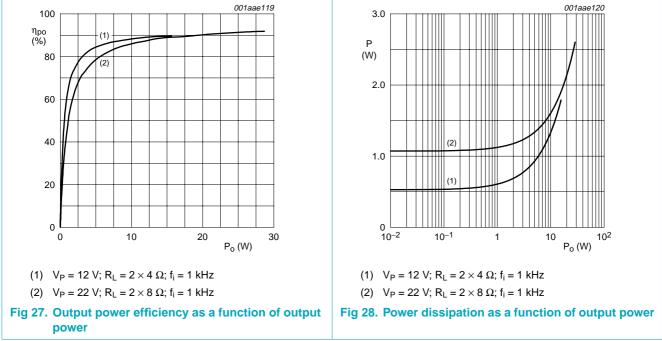
14.9 SE curves measured in reference design

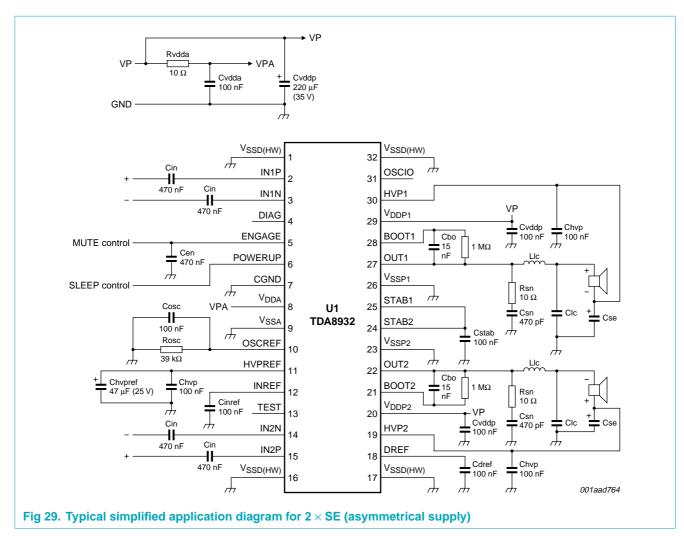

TDA8932 Class-D audio amplifier

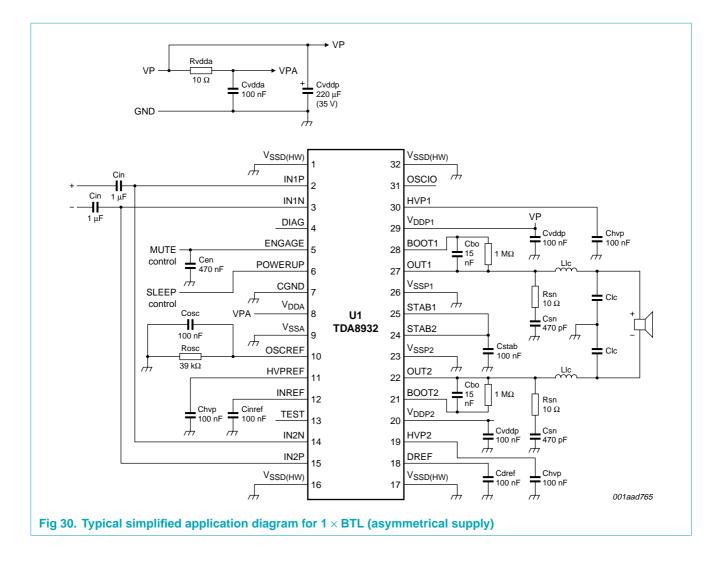

TDA8932 Class-D audio amplifier

14.10 BTL curves measured in reference design

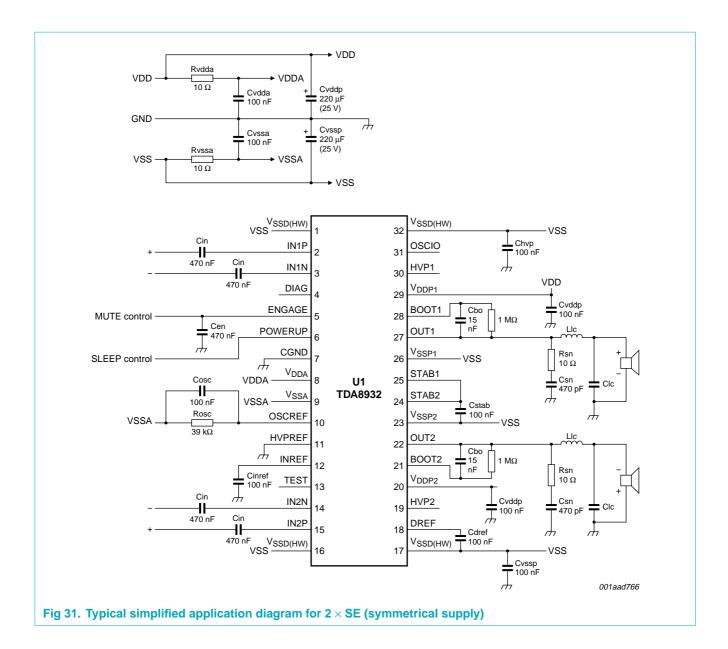



TDA8932 Class-D audio amplifier


TDA8932

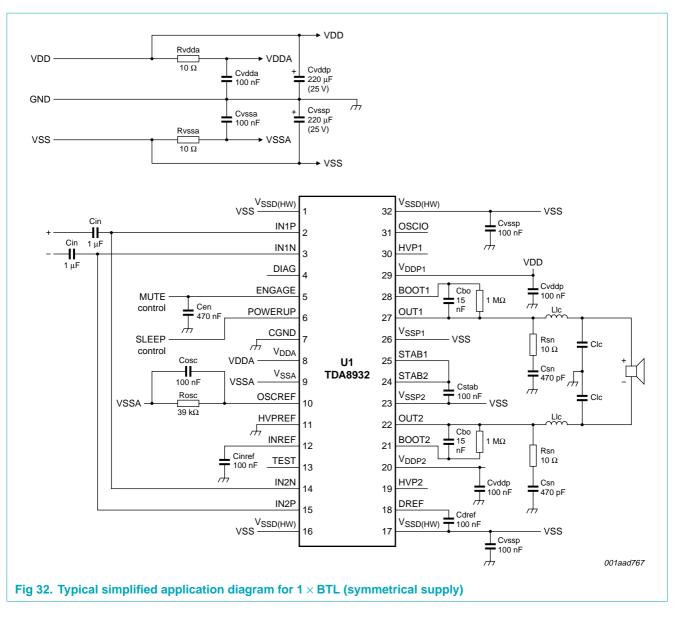

Class-D audio amplifier

14.11 Typical application schematics (simplified)


TDA8932

Class-D audio amplifier

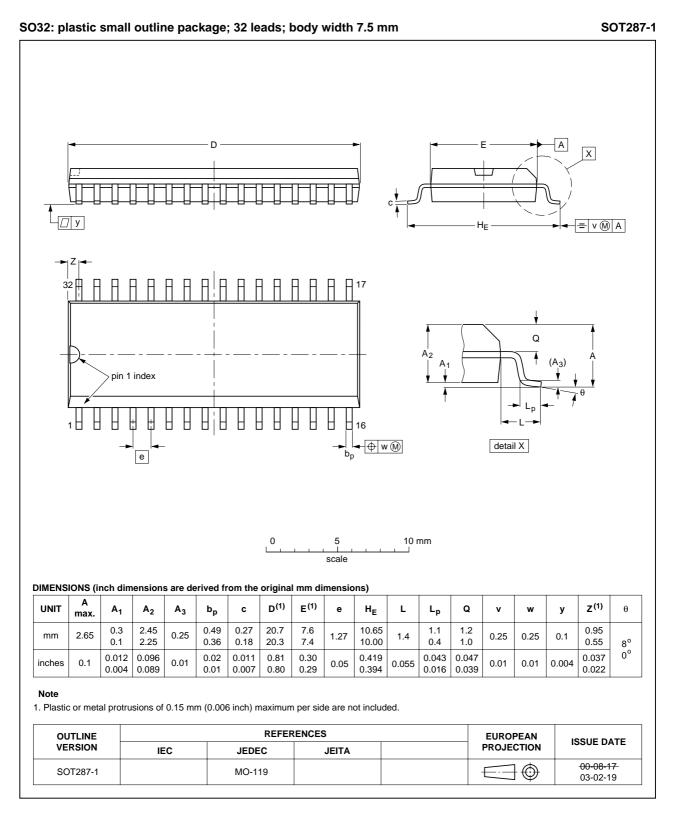
TDA8932


Class-D audio amplifier

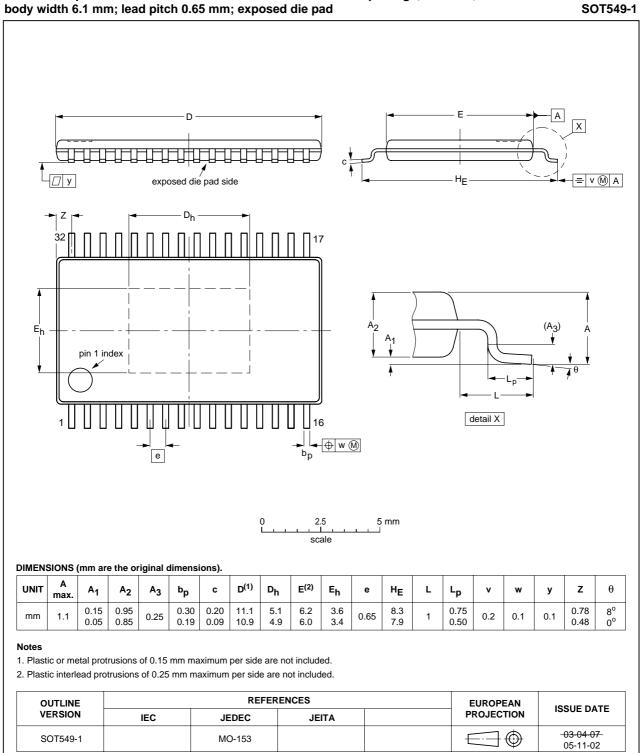
37 of 45

TDA8932

Class-D audio amplifier


15. Test information

15.1 Quality information


The General Quality Specification for Integrated Circuits, SNW-FQ-611 is applicable.

TDA8932 Class-D audio amplifier

16. Package outline

Fig 33. Package outline SOT287-1 (SO32)

HTSSOP32: plastic thermal enhanced thin shrink small outline package; 32 leads; body width 6.1 mm; lead pitch 0.65 mm; exposed die pad

Fig 34. Package outline SOT549-1 (HTSSOP32) TDA8932_1

17. Soldering

17.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *Data Handbook IC26; Integrated Circuit Packages* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

17.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 seconds and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 °C to 260 °C depending on solder paste material. The top-surface temperature of the packages should preferably be kept:

- below 225 °C (SnPb process) or below 245 °C (Pb-free process)
 - for all BGA, HTSSON..T and SSOP..T packages
 - for packages with a thickness \geq 2.5 mm
 - for packages with a thickness < 2.5 mm and a volume ≥ 350 mm³ so called thick/large packages.
- below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a thickness < 2.5 mm and a volume < 350 mm³ so called small/thin packages.

Moisture sensitivity precautions, as indicated on packing, must be respected at all times.

17.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;

TDA8932 1

- smaller than 1.27 mm, the footprint longitudinal axis **must** be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

• For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

17.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 $^{\circ}$ C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 seconds to 5 seconds between 270 $^{\circ}$ C and 320 $^{\circ}$ C.

17.5 Package related soldering information

Table 16. Suitability of surface mount IC packages for wave and reflow soldering methods

Package ^[1]	Soldering method				
	Wave	Reflow ^[2]			
BGA, HTSSONT ^[3] , LBGA, LFBGA, SQFP, SSOPT ^[3] , TFBGA, VFBGA, XSON	not suitable	suitable			
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable ^[4]	suitable			
PLCC ^[5] , SO, SOJ	suitable	suitable			
LQFP, QFP, TQFP	not recommended ^{[5][6]}	suitable			
SSOP, TSSOP, VSO, VSSOP	not recommended ^[7]	suitable			
CWQCCNL ^[8] , PMFP ^[9] , WQCCNL ^[8]	not suitable	not suitable			

 For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026); order a copy from your Philips Semiconductors sales office.

- [2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods.
- [3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package body peak temperature must be kept as low as possible.

- [4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- [5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- [6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- [7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
- [8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar soldering process. The appropriate soldering profile can be provided on request.
- [9] Hot bar soldering or manual soldering is suitable for PMFP packages.

18. Abbreviations

Table 17.	Abbreviations
Acronym	Description
BTL	Bridge Tied Load
DMOS	Double diffused Metal Oxide Semiconductor
ESD	ElectroStatic Discharge
PWM	Pulse Width Modulation
OCP	OverCurrent Protection
OTP	OverTemperature Protection
OVP	OverVoltage Protection
UBP	UnBalance Protection
UVP	UnderVoltage Protection
TF	Thermal Foldback
WP	Window Protection

19. Revision history

Table 18. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
TDA8932_1	20060511	Preliminary data sheet	-	-

20. Legal information

20.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.semiconductors.philips.com.

20.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Philips Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Philips Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

20.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Philips Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Philips Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Philips Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a Philips Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Philips Semiconductors accepts no liability for inclusion and/or use of Philips Semiconductors products in such equipment or applications and therefore such inclusion and/or use is for the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Philips Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.semiconductors.philips.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Philips Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

20.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

21. Contact information

For additional information, please visit: http://www.semiconductors.philips.com

For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

TDA8932

Class-D audio amplifier

22. Contents

1	General description 1
2	Features 1
3	Applications 1
4	Quick reference data 2
5	Ordering information 2
6	Block diagram 3
7	Pinning information 4
7.1	Pinning
7.2	Pin description 4
8	Functional description 6
8.1	General
8.2	Mode selection and interfacing
8.3	Pulse width modulation frequency
8.4	Protections
8.4.1	Thermal Foldback (TF)
8.4.2	OverTemperature Protection (OTP)
8.4.3	OverCurrent Protection (OCP) 9
8.4.4	Window Protection (WP) 10
8.4.5	Supply voltage protections
8.5	Diagnostic input and output 11
8.6	Differential inputs 11
8.7	Output voltage buffers
9	Internal circuitry
9 10	······································
-	-
10	Limiting values
10 11	Limiting values17Thermal characteristics17Static characteristics18
10 11 12	Limiting values17Thermal characteristics17Static characteristics18Dynamic characteristics20
10 11 12 13	Limiting values17Thermal characteristics17Static characteristics18Dynamic characteristics20Application information23
10 11 12 13 14	Limiting values17Thermal characteristics17Static characteristics18Dynamic characteristics20Application information23Output power estimation23
10 11 12 13 14 14.1	Limiting values17Thermal characteristics17Static characteristics18Dynamic characteristics20Application information23Output power estimation23Output current limiting25
10 11 12 13 14 14.1 14.2	Limiting values17Thermal characteristics17Static characteristics18Dynamic characteristics20Application information23Output power estimation23Output current limiting25Speaker configuration and impedance25
10 11 12 13 14 14.1 14.2 14.3	Limiting values17Thermal characteristics17Static characteristics18Dynamic characteristics20Application information23Output power estimation23Output current limiting25Speaker configuration and impedance25Single-ended capacitor25
10 11 12 13 14 14.1 14.2 14.3 14.4	Limiting values17Thermal characteristics17Static characteristics18Dynamic characteristics20Application information23Output power estimation23Output current limiting25Speaker configuration and impedance25Single-ended capacitor25Gain reduction26
10 11 12 13 14 14.1 14.2 14.3 14.4 14.5	Limiting values17Thermal characteristics17Static characteristics18Dynamic characteristics20Application information23Output power estimation23Output current limiting25Speaker configuration and impedance25Single-ended capacitor25Gain reduction26Device synchronization27
10 11 12 13 14 14.1 14.2 14.3 14.4 14.5 14.6	Limiting values17Thermal characteristics17Static characteristics18Dynamic characteristics20Application information23Output power estimation23Output current limiting25Speaker configuration and impedance25Single-ended capacitor25Gain reduction26Device synchronization27Thermal behavior (printed-circuit board
10 11 12 13 14 14.1 14.2 14.3 14.4 14.5 14.6	Limiting values17Thermal characteristics17Static characteristics18Dynamic characteristics20Application information23Output power estimation23Output power estimation23Output current limiting25Speaker configuration and impedance25Single-ended capacitor25Gain reduction26Device synchronization27Thermal behavior (printed-circuit board considerations)27
10 11 12 13 14 14.1 14.2 14.3 14.4 14.5 14.6 14.7	Limiting values17Thermal characteristics17Static characteristics18Dynamic characteristics20Application information23Output power estimation23Output current limiting25Speaker configuration and impedance25Single-ended capacitor25Gain reduction26Device synchronization27Thermal behavior (printed-circuit board considerations)27Pumping effects29
10 11 12 13 14 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8	Limiting values17Thermal characteristics17Static characteristics18Dynamic characteristics20Application information23Output power estimation23Output power estimation23Output current limiting25Speaker configuration and impedance25Single-ended capacitor25Gain reduction26Device synchronization27Thermal behavior (printed-circuit board27Pumping effects29SE curves measured in reference design30
10 11 12 13 14 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9	Limiting values17Thermal characteristics17Static characteristics18Dynamic characteristics20Application information23Output power estimation23Output current limiting25Speaker configuration and impedance25Single-ended capacitor25Gain reduction26Device synchronization27Thermal behavior (printed-circuit board27Considerations)27Pumping effects29SE curves measured in reference design30BTL curves measured in reference design32
10 11 12 13 14 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10	Limiting values17Thermal characteristics17Static characteristics18Dynamic characteristics20Application information23Output power estimation23Output current limiting25Speaker configuration and impedance25Single-ended capacitor25Gain reduction26Device synchronization27Thermal behavior (printed-circuit board29SE curves measured in reference design30BTL curves measured in reference design32Typical application schematics (simplified)35
10 11 12 13 14 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11	Limiting values17Thermal characteristics17Static characteristics18Dynamic characteristics20Application information23Output power estimation23Output current limiting25Speaker configuration and impedance25Single-ended capacitor25Gain reduction26Device synchronization27Thermal behavior (printed-circuit board29SE curves measured in reference design30BTL curves measured in reference design32Typical application schematics (simplified)35
10 11 12 13 14 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11	Limiting values17Thermal characteristics17Static characteristics18Dynamic characteristics20Application information23Output power estimation23Output current limiting25Speaker configuration and impedance25Single-ended capacitor25Gain reduction26Device synchronization27Thermal behavior (printed-circuit board27Considerations)27Pumping effects29SE curves measured in reference design30BTL curves measured in reference design32Typical application schematics (simplified)35Test information38

17.1	Introduction to soldering surface mount
	packages
17.2	Reflow soldering
17.3	Wave soldering
17.4	Manual soldering 42
17.5	Package related soldering information 42
18	Abbreviations 43
19	Revision history 43
20	Legal information 44
20.1	Data sheet status 44
20.2	Definitions 44
20.3	Disclaimers 44
20.4	Trademarks 44
21	Contact information 44
22	Contents 45

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© Koninklijke Philips Electronics N.V. 2006. All rights reserved.

For more information, please visit: http://www.semiconductors.philips.com. For sales office addresses, email to: sales.addresses@www.semiconductors.philips.com.

Date of release: 11 May 2006 Document identifier: TDA8932_1

