FEATURES

Wideband switch: -3 dB @ 2.5 GHz ADG904: absorptive 4:1 mux/SP4T ADG904-R: reflective 4:1 mux/SP4T High off isolation ($\mathbf{3 7} \mathbf{d B} @ 1 \mathbf{~ G H z}$) Low insertion loss (1.1 dB dc to 1 GHz)
Single 1.65 V to 2.75 V power supply
CMOS/LVTTL control logic
20-lead TSSOP and $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP packages
Low power consumption ($1 \mu \mathrm{~A}$ maximum)

APPLICATIONS

Wireless communications
General-purpose RF switching
Dual-band applications
High speed filter selection
Digital transceiver front end switch
IF switching
Tuner modules
Antenna diversity switching

GENERAL DESCRIPTION

The ADG904 and ADG904-R are wideband analog 4:1 multiplexers that use a CMOS process to provide high isolation and low insertion loss to 1 GHz . The ADG904 is an absorptive/matched mux with 50Ω terminated shunt legs; the ADG904-R is a reflective mux. These devices are designed such that the isolation is high over the dc to 1 GHz frequency range.

The ADG904 and ADG904-R switch one of four inputs to a common output, RFC, as determined by the 3-bit binary address lines A0, A1, and $\overline{\mathrm{EN}}$. A Logic 1 on the $\overline{\mathrm{EN}}$ pin disables the device.

Figure 3. Off Isolation vs. Frequency
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

Figure 2.

The parts have on-board CMOS control logic, which eliminates the need for external control circuitry. The control inputs are both CMOS and LVTTL compatible. The low power consumption of these devices makes them ideally suited for wireless applications and general-purpose high frequency switching.

PRODUCT HIGHLIGHTS

1. -37 dB off isolation @ 1 GHz
2. 1.1 dB insertion loss @ 1 GHz
3. 20-lead TSSOP/LFCSP packages

Figure 4. Insertion Loss vs. Frequency

[^0]
ADG904/ADG904-R

TABLE OF CONTENTS

Specifications 3
Absolute Maximum Ratings 4
ESD Caution 4
Pin Configurations and Function Descriptions 5
Terminology 6
Typical Performance Characteristics 7
Test Circuits 9
Applications. 11
REVISION HISTORY
2/07—Rev. A to Rev. B
Updated Outline Dimensions 13
Changes to Ordering Guide 14
8/05—Rev. 0 to Rev. AAdded LFCSP PackageUniversal
Changes to Specifications 3
Changes to Absolute Maximum Ratings 4
Inserted New Figure 6 5
Changes to Table 4 5
Changes to Outline Dimensions 13
Changes to Ordering Guide 14
Absorptive vs. Reflective 11
Antenna Diversity Switch. 11
Filter Selection 11
Tx/Rx Switching 11
Evaluation Board 12
Outline Dimensions 13
Ordering Guide 14

SPECIFICATIONS

VDD $=1.65 \mathrm{~V}$ to 2.75 V , GND $=0 \mathrm{~V}$, Input Power $=0 \mathrm{dBm}$, all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. ${ }^{1}$
Table 1.

[^1]
ADG904/ADG904-R

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	Rating
$V_{\text {DD }}$ to GND	-0.5 V to +4 V
Inputs to GND	-0.5 V to $\mathrm{VDD}+0.3 \mathrm{~V}^{1}$
Continuous Current	30 mA
Input Power	18 dBm
Operating Temperature Range	
\quad Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
TSSOP Package	
$\quad \theta_{\text {JA }}$ Thermal Impedance	$143^{\circ} \mathrm{C} / \mathrm{W}$
LFCSP Package	
\quad נJA Thermal Impedance $_{\quad \text { (4-Layer Board) }}$	$30.4^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering $(10 \mathrm{sec})$	$300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature ($<20 \mathrm{sec})$	$235^{\circ} \mathrm{C}$
ESD	1 kV

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

Table 3. Truth Table

A1
A
A0
0

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 5. 20-Lead TSSOP (RU-20)

Figure 6. 20-Lead $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP (CP-20-1)

Table 4. Pin Function Descriptions

Pin No.		Mnemonic	Function
20-Lead TSSOP	20-Lead LFCSP		
1	18	$\overline{\mathrm{EN}}$	Active Low Digital Input. When high, the device is disabled and all switches are off. When low, Ax logic inputs determine On switches.
2	19	$V_{D D}$	Power Supply Input. These parts can be operated from 1.65 V to 2.75 V . VDD should be decoupled to GND.
$\begin{aligned} & 3,5,6,8,9,11,12 \\ & 13,15,16,18 \end{aligned}$	$\begin{aligned} & 1,3,4,6,7,9,10, \\ & 12,13,15,20 \end{aligned}$	GND	Ground Reference Point for All Circuitry on the Part.
4	2	RF1	RF1 Port.
7	5	RF3	RF3 Port.
10	8	RFC	Common RF Port for Switch.
14	11	RF4	RF4 Port.
17	14	RF2	RF2 Port.
19	16	A1	Logic Control Input.
20	17	A0	Logic Control Input.

ADG904/ADG904-R

TERMINOLOGY

Table 5.

Parameter	Description
$V_{\text {D }}$	Most Positive Power Supply Potential.
IDD	Positive Supply Current.
GND	Ground (0 V) Reference.
Ax	Logic Control Input.
$\mathrm{V}_{\text {INL }}$	Maximum Input Voltage for Logic 0.
$\mathrm{V}_{\text {INH }}$	Minimum Input Voltage for Logic 1.
IINL (INH)	Input Current of the Digital Input.
CIn	Digital Input Capacitance.
ton (EN)	Delay between Applying the $\overline{\mathrm{EN}}$ Control Input and the Output Switching On.
$\mathrm{toff}_{\text {(EN }}$	Delay between Applying the $\overline{\mathrm{EN}}$ Control Input and the Output Switching Off.
$\mathrm{trisE}^{\text {en }}$	Rise Time. Time for the RF signal to rise from 10% of the on level to 90% of the on level.
$\mathrm{t}_{\text {fall }}$	Fall Time. Time for the RF signal to fall from 90% of the on level to 10% of the on level.
$t_{\text {trans }}$	Transition Time. Delay between applying the digital control input and the output switching on.
Off Isolation	The Attenuation between Input and Output Ports of the Switch when the Switch Control Voltage is in the Off Condition.
Insertion Loss	The Attenuation between Input and Output Ports of the Switch when the Switch Control Voltage is in the On Condition.
Crosstalk	Measure of Unwanted Signal Coupled through from One Channel to Another as a Result of Parasitic Capacitance.
$\mathrm{P}_{-1 \mathrm{~dB}}$	1 dB Compression Point. The RF input power level at which the switch insertion loss increases by 1 dB over its low level value. $\mathrm{P}_{-1 \mathrm{~dB}}$ is a measure of how much power the on switch can handle before the insertion loss increases by 1 dB .
IP_{3}	Third-Order Intermodulation Intercept. This is a measure of the power in false tones that occur when closely spaced tones are passed through a switch, and the nonlinearity of the switch causes these false tones to be generated.
Return Loss	The Amount of Reflected Power Relative to the Incident Power at a Port. Large return loss indicates good matching. By measuring return loss, the voltage standing wave ratio (VSWR) can be calculated from conversion charts. VSWR indicates the degree of matching present at a switch RF port.
Video Feedthrough	Spurious Signals Present at the RF Ports of the Switch when the Control Voltage Is Switched from High to Low or Low to High without an RF Signal Present.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. Insertion Loss vs. Frequency over Supplies
(RF1-RF4, S12, and S21)

Figure 8. Insertion Loss vs. Frequency over Supplies (RF1-RF4, S12, and S21). Zoomed Figure 7 Plot

Figure 9. Insertion Loss vs. Frequency over Supplies
(RF1-RF4, S12, and S21)

Figure 10. Insertion Loss vs. Frequency over Temperature ((RF1-RF4, S12, and S21)

Figure 11. Isolation vs. Frequency over Supplies (RF1-RF4, S12, and S21)

Figure 12. Isolation vs. Frequency over Temperature (RF1-RF4, S12, and S21)

ADG904/ADG904-R

Figure 13. Return Loss vs. Frequency (RF1-RF4, S11)

Figure 14. Crosstalk vs. Frequency

Figure 15. Switch Timing

Figure 16. Video Feedthrough

Figure 17. IP_{3} vs. Frequency

Figure 18. P-1 dB vs. Frequency

TEST CIRCUITS

Figure 19. Switch Timing: ton , OFFF

Figure 20. Switch Timing: $t_{R I S E,} t_{\text {FALL }}$

Figure 21. Off Isolation

Figure 22. Insertion Loss

Figure 23. Crosstalk

Figure 24. Video Feedthrough

ADG904/ADG904-R

APPLICATIONS

The ADG904 and ADG904-R are ideal solutions for low power, high frequency applications. The low insertion loss, high isolation between ports, low distortion, and low current consumption of these parts make them excellent solutions for many high frequency switching applications. They may be used in applications such as switchable filters, transmitters and receivers for radar systems, and communications systems from base stations to cell phones.

The ADG9xx wideband switches are designed to meet the demands of devices that transmit at ISM band frequencies of 1 GHz and higher. The low insertion loss, high isolation between ports, single pin control interface, no requirement for dc blocking capacitors, and TTL interface compatibility of these parts make them cost-effective and an easy-to-integrate switching solution for many high frequency switching applications and low power applications where the parts can handle up to 16 dBm of power.

ABSORPTIVE VS. REFLECTIVE

The ADG904 is an absorptive (matched) switch with 50Ω terminated shunt legs; the ADG904-R is a reflective switch with 0Ω terminated shunts to ground. The ADG904 absorptive switch has a good VSWR on each port, regardless of the switch mode. An absorptive switch should be used when there is a need for a good VSWR that is looking into the port but not passing the through signal to the common port. The ADG904 is therefore ideal for applications that require minimum reflections back to the RF source. It also ensures that the maximum power is transferred to the load.

The ADG904-R reflective switch is suitable for applications where high off port VSWR does not matter, and the switch has other performance features. It may be used in many applications, including high speed filter selection. In most cases, an absorptive switch may be used instead of a reflective switch, but not vice versa.

ANTENNA DIVERSITY SWITCH

The ADG904 is ideal for use as an antenna diversity switch, switching different antennas into the tuner. The low insertion loss ensures minimum signal loss and high isolation between channels, making these SP4T switches suitable for switching applications in tuner modules and set-top boxes.

Figure 27. Tuner Modules

FILTER SELECTION

The ADG904 can be used to switch high frequency signals between different filters and to multiplex the signal to the output. These SP4T switches are also ideal for high speed signal routing.

Figure 28. Filter Selection

Tx/Rx SWITCHING

The low insertion loss and high isolation between ports ensure that the ADG904 and ADG904-R are suitable transmit/receive switches for all ISM band and wireless LAN, providing the required isolation between the transmit signal and the receive signal.

Figure 29. Tx/Rx Switching

ADG904/ADG904-R

EVALUATION BOARD

The ADG904/ADG904-R evaluation board allows designers to evaluate the high performance, wideband switches with minimal effort.

Only a power supply and a network analyzer, along with the evaluation board, are required to demonstrate that these devices meet user requirements. An application note, available with the evaluation board, provides complete operating information.

The RFC port (see Figure 30) is connected through a 50Ω transmission line to the bottom left SMA connector, J4. RF1, RF2, RF3, and RF4 are connected through 50Ω transmission lines to SMA connectors J5, J6, J7, and J8, respectively. A through transmission line connects J9 and J10; this transmission line is used to estimate the loss of the PCB over the environmental conditions being evaluated.

The board is constructed of four-layer, FR4 material with a dielectric constant of 4.3 and an overall thickness of 0.062 inches. Two ground layers with grounded planes provide ground for the RF transmission lines. The transmission lines were designed using a coplanar waveguide with a ground plane model using a trace width of 0.024 inches, clearance to ground plane of 0.008 inches, dielectric thickness of 0.02 inches, and a metal thickness of 0.0021 inches.

Figure 30. ADG904/ADG904-R Evaluation Board Top View

OUTLINE DIMENSIONS

Figure 31. 20-Lead Thin Shrink Small Outline Package [TSSOP]
($R U-20$)
Dimensions shown in millimeters

Figure 32. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
4 mm x 4 mm Body, Very Thin Quad (CP-20-1)
Dimensions shown in millimeters

ADG904/ADG904-R

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG904BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package (TSSOP)	RU-20
ADG904BRU-500RL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package (TSSOP)	RU-20
ADG904BRU-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package (TSSOP)	RU-20
ADG904BRU-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package (TSSOP)	RU-20
ADG904BRUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20
ADG904BRUZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package (TSSOP)	RU-20
ADG904BRU-R	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package (TSSOP)	RU-20
ADG904BRU-R-500RL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package (TSSOP)	RU-20
ADG904BRU-R-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package (TSSOP)	RU-20
ADG904BRU-R-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package (TSSOP)	RU-20
ADG904BRUZ-R ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package (TSSOP)	RU-20
ADG904BCP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-20-1
ADG904BCP-500RL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-20-1
ADG904BCP-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-20-1
ADG904BCP-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-20-1
ADG904BCPZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-20-1
ADG904BCPZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-20-1
ADG904BCPZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-20-1
ADG904BCP-R	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-20-1
ADG904BCP-R-500RL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-20-1
ADG904BCP-R-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-20-1
ADG904BCP-R-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-20-1
EVAL-ADG904EBZ ${ }^{1}$		Evaluation Board	
EVAL-ADG904REB		Evaluation Board	

[^2]NOTES

ADG904/ADG904-R

NOTES

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2004-2007 Analog Devices, Inc. All rights reserved.

[^1]: ${ }^{1}$ Temperature range B version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Typical values are at $V_{D D}=2.5 \mathrm{~V}$ and $25^{\circ} \mathrm{C}$, unless otherwise stated.
 ${ }^{3}$ Operating frequency is the point at which insertion loss degrades by 1.5 dB .
 ${ }^{4}$ Guaranteed by design, not subject to production test.
 ${ }^{5}$ Video feedthrough is the dc transience at the output of any port of the switch when the control voltage is switched from high to low or low to high in a 50Ω test setup, measured with 1 ns rise time pulses and 500 MHz bandwidth.

[^2]: ${ }^{1} Z=$ RoHS compliant part.

