1 Meg Bits x 16 Bits x 4 Banks (64-MBIT) SYNCHRONOUS DYNAMIC RAM ## TARGET SPECIFICATION JUNE 2000 #### **FEATURES** - Clock frequency: 166, 143, 125, 100 MHz - Fully synchronous; all signals referenced to a positive clock edge - Internal bank for hiding row access/precharge - Single 3.3V power supply - LVTTL interface - Programmable burst length (1, 2, 4, 8, full page) - Programmable burst sequence: Sequential/Interleave - Self refresh modes - 4096 refresh cycles every 64 ms - Random column address every clock cycle - Programmable CAS latency (2, 3 clocks) - Burst read/write and burst read/single write operations capability - Burst termination by burst stop and precharge command - Byte controlled by LDQM and UDQM - Industrial temperature availability - Package 400-mil 54-pin TSOP II #### DESCRIPTION *ISSI*'s 16Mb Synchronous DRAMIS42S16400 is organized as a 1,048,576 bits x 16-bit x 4-bank for improved performance. The synchronous DRAMs achieve high-speed data transfer using pipeline architecture. All inputs and outputs signals refer to the rising edge of the clock input. ## PIN CONFIGURATIONS 54-Pin TSOP (Type II) #### **PIN DESCRIPTIONS** | A0-A11 | Address Input | |---------------|-------------------------------| | BA0, BA1 | Bank Select Address | | I/O0 to I/O15 | Data I/O | | CLK | System Clock Input | | CKE | Clock Enable | | CS | Chip Select | | RAS | Row Address Strobe Command | | CAS | Column Address Strobe Command | | WE | Write Enable | | | |------|------------------------------|--|--| | LDQM | Lower Bye, Input/Output Mask | | | | UDQM | Upper Bye, Input/Output Mask | | | | Vcc | Power | | | | GND | Ground | | | | VccQ | Power Supply for I/O Pin | | | | GNDQ | Ground for I/O Pin | | | | NC | No Connection | | | This document contains TARGET SPECIFICATION data. ISSI reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsibility for any errors which may appear in this publication. © Copyright 2000, Integrated Silicon Solution, Inc. ## **PIN FUNCTIONS** | Pin No. | Symbol | Type | Function (In Detail) | |--|------------------|------------------|---| | 23 to 26
29 to 34
22, 35 | A0-A11 | Input Pin | Address Inputs: A0-A11 are sampled during the ACTIVE command (row-address A0-A11) and READ/WRITE command (A0-A7 with A10 defining auto precharge) to select one location out of the memory array in the respective bank. A10 is sampled during a PRECHARGE command to determine if all banks are to be precharged (A10 HIGH) or bank selected by BA0, BA1 (LOW). The address inputs also provide the op-code during a LOAD MODE REGISTER command. | | 20, 21 | BA0, BA1 | Input Pin | Bank Select Address: BA0 and BA1 defines which bank the ACTIVE, READ, WRITE or PRECHARGE command is being applied. | | 17 | CAS | Input Pin | $\overline{\text{CAS}}$, in conjunction with the $\overline{\text{RAS}}$ and $\overline{\text{WE}}$, forms the device command. See the "Command Truth Table" item for details on device commands. | | 37 | CKE | Input Pin | The CKE input determines whether the CLK input is enabled within the device. When is CKE HIGH, the next rising edge of the CLK signal will be valid, and when LOW, invalid. When CKE is LOW, the device will be in either the power-down mode, the clock suspend mode, or the self refresh mode. The CKE is an asynchronous input. | | 38 | CLK | Input Pin | CLK is the master clock input for this device. Except for CKE, all inputs to this device are acquired in synchronization with the rising edge of this pin. | | 19 | <u>CS</u> | Input Pin | The $\overline{\text{CS}}$ input determines whether command input is enabled within the device. Command input is enabled when $\overline{\text{CS}}$ is LOW, and disabled with $\overline{\text{CS}}$ is HIGH. The device remains in the previous state when $\overline{\text{CS}}$ is HIGH. | | 2, 4, 5, 7, 8, 10,
11,13, 42, 44, 45,
47, 48, 50, 51, 53 | I/O0 to
I/O15 | I/O Pin | I/O0 to I/O15 are I/O pins. I/O through these pins can be controlled in byte units using the LDQM and UDQM pins. | | 15, 39 | LDQM,
UDQM | Input Pin | LDQM and UDQM control the lower and upper bytes of the I/O buffers. In read mode, LDQM and UDQM control the output buffer. When LDQM or UDQM is LOW, the corresponding buffer byte is enabled, and when HIGH, disabled. The outputs go to the HIGH impedance state when LDQM/UDQM is HIGH. This function corresponds to \overline{OE} in conventional DRAMs. In write mode, LDQM and UDQM control the input buffer. When LDQM or UDQM is LOW, the corresponding buffer byte is enabled, and data can be written to the device. When LDQM or UDQM is HIGH, input data is masked and cannot be written to the device. | | 18 | RAS | Input Pin | RAS, in conjunction with CAS and WE, forms the device command. See the "Command Truth Table" item for details on device commands. | | 16 | WE | Input Pin | WE, in conjunction with RAS and CAS, forms the device command. See the "Command Truth Table" item for details on device commands. | | 3, 9, 43, 49 | VccQ | Power Supply Pin | VccQ is the output buffer power supply. | | 1, 14, 27 | Vcc | Power Supply Pin | Vcc is the device internal power supply. | | 6, 12, 46, 52 | GNDQ | Power Supply Pin | GNDQ is the output buffer ground. | | 28, 41, 54 | GND | Power Supply Pin | GND is the device internal ground. | ## **FUNCTIONAL BLOCK DIAGRAM** #### **ABSOLUTE MAXIMUM RATINGS(1)** | Symbol | Parameters | | Rating | Unit | |----------|-----------------------------|---------------|--------------|------| | VCC MAX | Maximum Supply Voltage | | -1.0 to +4.6 | V | | VCCQ MAX | Maximum Supply Voltage for | Output Buffer | -1.0 to +4.6 | V | | VIN | Input Voltage | | -1.0 to +4.6 | V | | Vout | Output Voltage | | -1.0 to +4.6 | V | | PD MAX | Allowable Power Dissipation | | 1 | W | | Ics | Output Shorted Current | | 50 | mA | | Topr | Operating Temperature | Com. | 0 to +70 | °C | | | | Ind. | -40 to +85 | | | Тѕтс | Storage Temperature | | -55 to +150 | °C | ## DC RECOMMENDED OPERATING CONDITIONS⁽²⁾ (At $T_A = 0$ to +70°C) | Symbol | Parameter | Min. | Тур. | Max. | Unit | |-----------|-----------------------|------|------|-----------------------|------| | Vcc, VccQ | Supply Voltage | 3.0 | 3.3 | 3.6 | V | | ViH | Input High Voltage(3) | 2.0 | _ | V _{DD} + 0.3 | V | | VIL | Input Low Voltage(4) | -0.3 | _ | +0.8 | V | ## **CAPACITANCE CHARACTERISTICS**(1,2) (At TA = 0 to +25°C, Vcc = VccQ = 3.3 ± 0.3 V, f = 1 MHz) | Symbol | Parameter | Тур. | Max. | Unit | |--------|---|------|------|------| | CIN1 | Input Capacitance: A0-A11, BA0, BA1 | _ | 4 | рF | | Cin2 | Input Capacitance: (CLK, CKE, CS, RAS, CAS, WE, LDQM, UDQM) | _ | 4 | рF | | CI/O | Data Input/Output Capacitance: I/O0-I/O15 | _ | 5 | pF | #### Notes: - 1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. - 2. All voltages are referenced to GND. - 3. V_{IH} (max) = V_{CCQ} + 2.0V with a pulse width \leq 3 ns. - 4. V_{IL} (min) = GND 2.0V with a pulse < 3 ns and -1.5V with a pulse < 5ns. ## DC ELECTRICAL CHARACTERISTICS (Recommended Operation Conditions unless otherwise noted.) | Symbol | Parameter | Test Condition | | Speed | Min. | Max. | Unit | |--------|---------------------------|---|------------------------------|----------|----------------|------|-----------| | lıL | Input Leakage Current | $0V \le V_{IN} \le V_{CC}$, with poster the tested pin at $0V$ | ins other than | | – 5 | 5 | μΑ | | loL | Output Leakage Current | Output is disabled
0V ≤ Vouт ≤ Vcc | | | - 5 | 5 | μΑ | | Vон | Output High Voltage Level | lоuт = −2 mA | | | 2.4 | _ | V | | Vol | Output Low Voltage Level | lоuт = +2 mA | | | _ | 0.4 | V | | Icc1 | Operating Current(1,2) | One Bank Operation, | CAS latency = 3 | -6 | _ | 140 | mA | | | | Burst Length=1 | | -7 | _ | 125 | mA | | | | tRC ≥ tRC (min.) | | -8 | | 115 | mA | | | | Iout = 0mA | | -10 | _ | 110 | mA | | Icc2P | Precharge Standby Current | CKE ≤ VIL (MAX) | tck = tck (MIN) | _ | _ | 3 | mA | | Icc2PS | (In Power-Down Mode) | | tck = ∞ | _ | _ | 2 | mA | | Icc2N | Precharge Standby Current | CKE ≥ VIH (MIN) | tck = tck (MIN) | _ | _ | 30 | mA | | Icc2NS | (In Non Power-Down Mode) | | tck = ∞ | _ | _ | 6 | mA | | Icc3P | Active Standby Current | CKE ≤ VIL (MAX) | tck = tck (MIN) | _ | _ | 3 | mA | | Icc3PS | (In Power-Down Mode) | | tck = ∞ | | | 2 | mA | | Icc3N | Active Standby Current | CKE ≥ VIH (MIN) | tck = tck (MIN) | _ | _ | 40 | mA | | Icc3NS | (In Non Power-Down Mode) | | tck = ∞ | | _ | 15 | mA | | Icc4 | Operating Current | tck = tck (MIN) | CAS latency = 3 | -6 | _ | 170 | mA | | | (In Burst Mode)(1) | IOUT = 0mA | | -7 | | 150 | mA | | | | | | -8 | _ | 140 | mA | | | | | | -10 | | 130 | mA | | | | | \overline{CAS} latency = 2 | -6 | _ | 170 | mA | | | | | | -7 | _ | 150 | mA | | | | | | -8 | _ | 140 | mA | | | | | | -10 | | 130 | mA | | Icc5 | Auto-Refresh Current | trc = trc (MIN) | \overline{CAS} latency = 3 | -6 | _ | 230 | mA | | | | | | -7 | _ | 230 | mA | | | | | | -8 | _ | 190 | mΑ | | | | | | -10 | | 130 | mA | | | | | CAS latency = 2 | -6 | _ | 170 | mA | | | | | | -7 | _ | 150 | mA | | | | | | -8
10 | | 140 | mA | | loos | Calf Dafragh Command | CKE < 0.0M | | -10 | | 130 | mA
m A | | lcc6 | Self-Refresh Current | CKE ≤ 0.2V | | _ | | 1 | mA | #### Notes: ^{1.} These are the values at the minimum cycle time. Since the currents are transient, these values decrease as the cycle time increases. Also note that a bypass capacitor of at least 0.01 µF should be inserted between Vcc and GND for each memory chip to suppress power supply voltage noise (voltage drops) due to these transient currents. ^{2.} Icc1 and Icc4 depend on the output load. The maximum values for Icc1 and Icc4 are obtained with the output open state. #### AC CHARACTERISTICS(1,2,3) | | | | - | 6 | -7 | 7 | | |--------|---|-------------------------------------|----------|---------|----------|---------|-------| | Symbol | Parameter | | Min. | Max. | Min. | Max. | Units | | tck3 | Clock Cycle Time | CAS Latency = 3 | 6 | _ | 7 | _ | ns | | tck2 | • | $\overline{\text{CAS}}$ Latency = 2 | 8 | _ | 8.6 | _ | ns | | tac3 | Access Time From CLK ⁽⁴⁾ | CAS Latency = 3 | _ | 5.5 | _ | 6 | ns | | tac2 | | $\overline{\text{CAS}}$ Latency = 2 | _ | 6 | _ | 6 | ns | | tсні | CLK HIGH Level Width | | 2 | _ | 2.5 | _ | ns | | tcL | CLK LOW Level Width | | 2 | _ | 2.5 | | ns | | toн3 | Output Data Hold Time | CAS Latency = 3 | 2.5 | _ | 2.5 | _ | ns | | ton2 | | $\overline{\text{CAS}}$ Latency = 2 | 2.5 | _ | 2.5 | _ | ns | | tız | Output LOW Impedance Time | | 0 | _ | 0 | _ | ns | | tHz3 | Output HIGH Impedance Time(5) | CAS Latency = 3 | _ | 5.5 | _ | 6 | ns | | tHz2 | | CAS Latency = 2 | | 6 | | 6 | ns | | tos | Input Data Setup Time | | 1.5 | _ | 1.5 | _ | ns | | tон | Input Data Hold Time | | 0.8 | _ | 0.8 | _ | ns | | tas | Address Setup Time | | 1.5 | _ | 1.5 | | ns | | tah | Address Hold Time | | 0.8 | _ | 0.8 | _ | ns | | tcks | CKE Setup Time | | 1.5 | _ | 1.5 | _ | ns | | tскн | CKE Hold Time | | 0.8 | _ | 0.8 | _ | ns | | tcka | CKE to CLK Recovery Delay Time | | 1CLK+3 | _ | 1CLK+3 | | ns | | tcs | Command Setup Time (CS, RAS, CAS, WE, DQM) | | 1.5 | _ | 1.5 | _ | ns | | tсн | Command Hold Time (CS, RAS, CAS, WE, DQM) | | 0.8 | _ | 0.8 | _ | ns | | trc | Command Period (REF to REF / ACT to ACT) | | 60 | _ | 63 | _ | ns | | tras | Command Period (ACT to PRE) | | 35 | 120,000 | 37 | 120,000 | ns | | trp | Command Period (PRE to ACT) | | 15 | | 15 | | ns | | trcd | Active Command To Read / Write Command Delay Ti | me | 15 | _ | 15 | _ | ns | | trrd | Command Period (ACT [0] to ACT[1]) | | 14 | _ | 14 | _ | ns | | tDPL3 | Input Data To Precharge | CAS Latency = 3 | 1CLK | _ | 1CLK | | ns | | | Command Delay time | , | | | | | | | tDPL2 | • | $\overline{\text{CAS}}$ Latency = 2 | 1CLK | _ | 1CLK | _ | ns | | tdal3 | Input Data To Active / Refresh | CAS Latency = 3 | 1CLK+trp | _ | 1CLK+trp | _ | ns | | | Command Delay time (During Auto-Precharge) | | | | | | | | tdal2 | | CAS Latency = 2 | 1CLK+trp | _ | 1CLK+trp | _ | ns | | tτ | Transition Time | | 1 | 10 | 1 | 10 | ns | | tref | Refresh Cycle Time (4096) | | | 64 | | 64 | ms | #### Notes - 1. When power is first applied, memory operation should be started 100 µs after Vcc and VccQ reach their stipulated voltages. Also note that the power-on sequence must be executed before starting memory operation. - 2. Measured with $t_T = 1$ ns. - 3. The reference level is 1.4 V when measuring input signal timing. Rise and fall times are measured between VIH (min.) and VIL (max.). - 4. Access time is measured at 1.4V with the load shown in the figure below. - 5. The time thz (max.) is defined as the time required for the output voltage to transition by ± 200 mV from VoH (min.) or VoL (max.) when the output is in the high impedance state. 06/07/00 #### **AC CHARACTERISTICS**(1,2,3) | | | | -{ | 3 | -1 | 0 | | |--------|---|-------------------------------------|----------|---------|----------|---------|-------| | Symbol | Parameter | | Min. | Max. | Min. | Max. | Units | | tcк3 | Clock Cycle Time | CAS Latency = 3 | 8 | _ | 10 | _ | ns | | tck2 | • | $\overline{\text{CAS}}$ Latency = 2 | 10 | _ | 10 | _ | ns | | tac3 | Access Time From CLK ⁽⁴⁾ | CAS Latency = 3 | _ | 6 | _ | 7 | ns | | tac2 | | $\overline{\text{CAS}}$ Latency = 2 | _ | 7 | _ | 9 | ns | | tсні | CLK HIGH Level Width | | 3 | _ | 3.5 | _ | ns | | tcL | CLK LOW Level Width | | 3 | _ | 3.5 | _ | ns | | toн3 | Output Data Hold Time | CAS Latency = 3 | 2.5 | _ | 2.5 | _ | ns | | toн2 | | $\overline{\text{CAS}}$ Latency = 2 | 2.5 | _ | 2.5 | _ | ns | | tız | Output LOW Impedance Time | | 0 | _ | 0 | _ | ns | | tHz3 | Output HIGH Impedance Time(5) | $\overline{\text{CAS}}$ Latency = 3 | _ | 6 | _ | 7 | ns | | tHz2 | | $\overline{\text{CAS}}$ Latency = 2 | | 7 | | 9 | ns | | tos | Input Data Setup Time | | 2.0 | | 2.0 | | ns | | tон | Input Data Hold Time | | 1 | _ | 1 | _ | ns | | tas | Address Setup Time | | 2.0 | _ | 2.0 | _ | ns | | tah | Address Hold Time | | 1 | _ | 1 | _ | ns | | tcks | CKE Setup Time | | 2.0 | _ | 2.0 | _ | ns | | tскн | CKE Hold Time | | 1 | _ | 1 | _ | ns | | tcka | CKE to CLK Recovery Delay Time | | 1CLK+3 | _ | 1CLK+3 | _ | ns | | tcs | Command Setup Time (CS, RAS, CAS, WE, DQM) | | 2.0 | _ | 2.0 | _ | ns | | tсн | Command Hold Time (CS, RAS, CAS, WE, DQM) | | 1 | _ | 1 | _ | ns | | trc | Command Period (REF to REF / ACT to ACT) | | 68 | _ | 70 | _ | ns | | tras | Command Period (ACT to PRE) | | 42 | 120,000 | 44 | 120,000 | ns | | trp | Command Period (PRE to ACT) | | 18 | _ | 18 | _ | ns | | trcd | Active Command To Read / Write Command Delay Ti | me | 18 | _ | 18 | _ | ns | | trrd | Command Period (ACT [0] to ACT[1]) | | 15 | _ | 15 | _ | ns | | tdpl3 | Input Data To Precharge | CAS Latency = 3 | 1CLK | _ | 1CLK | _ | ns | | | Command Delay time | , | | | | | | | tDPL2 | | $\overline{\text{CAS}}$ Latency = 2 | 1CLK | _ | 1CLK | _ | ns | | tdal3 | Input Data To Active / Refresh | CAS Latency = 3 | 1CLK+trp | _ | 1CLK+trp | _ | ns | | | Command Delay time (During Auto-Precharge) | . | | | _ | | | | tDAL2 | | CAS Latency = 2 | 1CLK+trp | | 1CLK+trp | | ns | | tτ | Transition Time | | 1 | 10 | 1 | 10 | ns | | tref | Refresh Cycle Time | | | 64 | | 64 | ms | #### Notes - 1. When power is first applied, memory operation should be started 100 µs after Vcc and VccQ reach their stipulated voltages. Also note that the power-on sequence must be executed before starting memory operation. - 2. Measured with $t_T = 1$ ns. - 3. The reference level is 1.4 V when measuring input signal timing. Rise and fall times are measured between V_{IH} (min.) and V_{IL} (max.). - 4. Access time is measured at 1.4V with the load shown in the figure below. - 5. The time tHz (max.) is defined as the time required for the output voltage to transition by ± 200 mV from VoH (min.) or VoL (max.) when the output is in the high impedance state. ## **OPERATING FREQUENCY/LATENCY RELATIONSHIPS** | SYMBOL | PARAMETER | | -6 | -7 | -8. | -10. | UNITS | |--------|---|------------------|--------|--------|--------|--------|-------| | _ | Clock Cycle Time | | 6 | 7 | 8 | 10 | ns | | _ | Operating Frequency | | 166 | 143 | 125 | 100 | MHz | | tccd | READ/WRITE command to READ/WRITE com | nmand | 1 | 1 | 1 | 1 | cycle | | tcked | CKE to clock disable or power-down entry mo | de | 1 | 1 | 1 | 1 | cycle | | tped | CKE to clock enable or power-down exit setup | mode | 1 | 1 | 1 | 1 | cycle | | toqo | DQM to input data delay | | 0 | 0 | 0 | 0 | cycle | | tдам | DQM to data mask during WRITEs | | 0 | 0 | 0 | 0 | cycle | | tDQZ | DQM to data high-impedance during READs | | 2 | 2 | 2 | 2 | cycle | | towo | WRITE command to input data delay | | 0 | 0 | 0 | 0 | cycle | | tdal | Data-in to ACTIVE command | | 5 | 5 | 4 | 4 | cycle | | tdpl | Data-in to PRECHARGE command | | 2 | 2 | 2 | 2 | cycle | | tBDL | Last data-in to burst STOP command | | 1 | 1 | 1 | 1 | cycle | | tcdl | Last data-in to new READ/WRITE command | | 1 | 1 | 1 | 1 | cycle | | trdl | Last data-in to PRECHARGE command | | 2 | 2 | 2 | 2 | cycle | | tmrd | LOAD MODE REGISTER command to ACTIVE or REFRESH command | | 2 | 2 | 2 | 2 | cycle | | trон | Data-out to high-impedance from PRECHARGE command | CL = 3
CL = 2 | 3
2 | 3
2 | 3
2 | 3
2 | cycle | ## AC TEST CONDITIONS (Input/Output Reference Level: 1.4V) ## OPERATIONAL DESCRIPTION tbd GENERAL TRUTH TABLE tbd TIMING DIAGRAMS tbd #### **ORDERING INFORMATION** Commercial Range: 0°C to 70°C | Frequency | Speed (ns) | Order Part No. | Package | |-----------|------------|----------------|-----------------| | 166 MHz | 6 | IS42S16400-6T | 400-mil TSOP II | | 143MHz | 7 | IS42S16400-7T | 400-mil TSOP II | | 124MHz | 8 | IS42S16400-8T | 400-mil TSOP II | | 100 MHz | 10 | IS42S16400-10T | 400-mil TSOP II | ### Industrial Range: -40°C to 85°C | Frequency | Speed (ns) | Order Part No. | Package | |-----------|------------|-----------------|-----------------| | 166 MHz | 6 | IS42S16400-6TI | 400-mil TSOP II | | 143MHz | 7 | IS42S16400-7TI | 400-mil TSOP II | | 124MHz | 8 | IS42S16400-8TI | 400-mil TSOP II | | 100 MHz | 10 | IS42S16400-10TI | 400-mil TSOP II | ## Integrated Silicon Solution, Inc. 2231 Lawson Lane Santa Clara, CA 95054 Tel: 1-800-379-4774 Fax: (408) 588-0806 E-mail: sales@issi.com www.issi.com